![數(shù)學18章《全等三角形》導學案_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/18/bc1907f6-eb6c-4214-8378-870abfbfff68/bc1907f6-eb6c-4214-8378-870abfbfff681.gif)
![數(shù)學18章《全等三角形》導學案_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/18/bc1907f6-eb6c-4214-8378-870abfbfff68/bc1907f6-eb6c-4214-8378-870abfbfff682.gif)
![數(shù)學18章《全等三角形》導學案_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/18/bc1907f6-eb6c-4214-8378-870abfbfff68/bc1907f6-eb6c-4214-8378-870abfbfff683.gif)
![數(shù)學18章《全等三角形》導學案_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/18/bc1907f6-eb6c-4214-8378-870abfbfff68/bc1907f6-eb6c-4214-8378-870abfbfff684.gif)
![數(shù)學18章《全等三角形》導學案_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/18/bc1907f6-eb6c-4214-8378-870abfbfff68/bc1907f6-eb6c-4214-8378-870abfbfff685.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、導學引領(lǐng),樹梁中學對標檢測”嘗試教學導學案 七年級下第十八章全等三角形 授課教師: 主備教師: 王繼勇 審核校對:初四數(shù)學組【學習目標】1. 了解全等三角形的概念;2. 掌握三角形全等的條件;3. 了解等腰三角形的有關(guān)概念;4. 掌握等腰三角形的性質(zhì)和一個三角形是等腰三角形的條件;5. 了解等邊三角形及探索其性質(zhì);【知識梳理】一、基礎(chǔ)知識梳理(一)基本概念1、“全等”的理解 全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;即能夠完全重合的兩個圖形叫全等形。同樣我們把能夠完全重合的兩個三角形叫做全等三角形。2、全等三角形的性質(zhì)(1)全等三角形對應(yīng)邊相等;(2)全等三角形對應(yīng)角相等
2、;(3)全等三角形周長、面積相等。3、全等三角形的判定方法(1)三邊對應(yīng)相等的兩個三角形全等。(2)兩角和它們的夾邊對應(yīng)相等的兩個三角形全等。(3)兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等。(4)兩邊和它們的夾角對應(yīng)相等的兩個三角形全等。(5)斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。4、角平分線的性質(zhì)及判定性質(zhì):角平分線上的點到這個角的兩邊的距離相等判定:到一個角的兩邊距離相等的點在這個角平分線上(二)疑點、易錯點1、對全等三角形書寫的錯誤在書寫全等三角形時一定要把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上。切記不要弄錯。2、對全等三角形判定方法理解錯誤;3、利用角平分線的性質(zhì)證題時,要克服
3、多數(shù)同學習慣于用全等證明的思維定勢的消極影響。二、證明全等三角形的常見思路一、已知一邊與其一鄰角對應(yīng)相等 1.證已知角的另一邊對應(yīng)相等,再用SAS證全等。 例1 已知:如圖1,點E、F在BC上,BE=CF,AB=DC,B=C .求證:AF=DE. 2.證已知邊的另一鄰角對應(yīng)相等,再用ASA證全等。 例2 已知:如圖2,D是ABC的邊AB上一點,DF交AC于點E,DE=FE,F(xiàn)CAB.求證:AE=CE
4、 3.證已知邊的對角對應(yīng)相等,再用AAS證全等。 例3 (同例2)。 二、已知兩邊對應(yīng)相等1.證兩已知邊的夾角對應(yīng)相等,再用SAS證等。 例4 已知:如圖3,AD=AE,點D、E在BC上,BD=CE,1=2.求證: ABDACE 2.證第三邊對應(yīng)相等,再用SSS證全等。例5 已知:如圖4,點A
5、、C、B、D在同一直線上,AC=BD,AM=CN, BM=DN.求證: AMCN,BMDN 三、已知兩角對應(yīng)相等 1.證兩已知角的夾邊對應(yīng)相等,再用ASA證全等。 例6 已知:如圖5,點B、F、C、E在同一條直線上,F(xiàn)B=CE,B=E,ACB=DFE.求證:AB=DE, AC=DF 2.證一已知角的對邊對應(yīng)相等,再用AAS證全等。
6、0; 例7 已知:如圖6,AB、CD交于點O,E、F為AB上兩點,OA=OB,OE=OF,A=B,ACE=BDF. 求證:ACEBDF. 四、已知一邊與其對角對應(yīng)相等,則可證另一角對應(yīng)相等,再利用AAS證全等 例8 已知:如圖7,在ABC中,B、D、E、C在一條直線上,AD=AE,B=C. 求證:ABDACE. 四、常見全等三角形中添加輔助線方法(1)有角平分線時,通常在角的兩邊截取相等的線段,構(gòu)造全等三角形例如:如圖,已
7、知AD為ABC的中線,且12,34,求證:BECFEF。(2)有以線段中點為端點的線段時,常延長加倍此線段,構(gòu)造全等三角形。例如:如圖AD為ABC的中線,且12,34,求證:BECFEF (3)有三角形中線時,常延長加倍中線,構(gòu)造全等三角形。例如:AD為 ABC的中線,求證:ABAC2AD。【思考練習】已知ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向形外作等腰直角三角形,求證EF2AD。 (4)截長補短法作輔助線。例如:已知如圖在ABC中,ABAC,12,P為AD上任一點。求證:ABACPBPC。(5)延長已知邊構(gòu)造三角形。例如:如圖,已知ACBD,ADAC于A ,BCBD于
8、B,求證:ADBC(6)連接四邊形的對角線,把四邊形的問題轉(zhuǎn)化成為三角形來解決。例如:如圖ABCD,ADBC 求證:AB=CD。(7)有和角平分線垂直的線段時,通常把這條線段延長。例如:如圖,在RtABC中,ABAC,BAC90°,12,CEBD的延長線于E 。求證:BD2CE (8)連接已知點,構(gòu)造全等三角形。例如:已知:如圖,AC、BD相交于O點,且ABDC,ACBD,求證:AD。(9)取線段中點構(gòu)造全等三有形。例如:如圖,ABDC,AD 求證:ABCDCB。五、常見輔助線的作法有以下幾種:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”
9、遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形利用的思維模式是全等變換中的“旋轉(zhuǎn)”遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質(zhì)定理或逆定理過圖形上某一點作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明這種作法,適合于證明線段的和、差、倍、分等類的題目證兩條線段的和等于第三邊,這類型的題我們通常采用截長補短法,截長法即為在這三條最長的線段截取一段使它等于較短線段中的一條,然后證明剩下的一段等于另一條較短的線段。補短法即為在較短的一條線段上延長一段,使它們等于最長的線段,然后證明延長的這一線段等于另一條較短的線段。特殊方法:在求有關(guān)三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第8課 百家爭鳴 教學設(shè)計-2023-2024學年浙江省部編版歷史與社會七年級上冊
- 16 赤壁賦(教學設(shè)計)-2024-2025學年高一語文上學期同步教學教學設(shè)計專輯(統(tǒng)編版必修上冊)
- 標準國際勞務(wù)合同范本與標準土地抵押合同6篇
- 7 可愛的動物 (教學設(shè)計)2023-2024學年統(tǒng)編版道德與法治一年級下冊
- 口語交際:辯論(教學設(shè)計)2023-2024學年統(tǒng)編版語文六年級下冊
- 2024-2030年中國腮紅行業(yè)市場全景分析及投資策略研究報告
- 第四單元寫作《筆尖流出的故事》教學設(shè)計-2024-2025學年統(tǒng)編版語文(五四學制)六年級上冊
- 中心糧庫風險分析與應(yīng)對策略
- 第四單元 村落、城鎮(zhèn)與居住環(huán)境 大單元教學設(shè)計-2024-2025學年高二歷史統(tǒng)編版(2019)選擇性必修2經(jīng)濟與社會生活
- 2025年度餐飲股東合作協(xié)議與智能餐飲技術(shù)應(yīng)用合同
- 心腦血管疾病預防課件
- DB35T 1036-2023 10kV及以下電力用戶業(yè)擴工程技術(shù)規(guī)范
- 《油藏工程》課后習題答案
- 《人工智能通識教程》(第2版)教學大綱
- 中央2025年中國農(nóng)業(yè)銀行研發(fā)中心校園招聘344人筆試歷年參考題庫解題思路附帶答案詳解
- 中國移動自智網(wǎng)絡(luò)白皮書(2024) 強化自智網(wǎng)絡(luò)價值引領(lǐng)加速邁進L4級新階段
- 8.1認識生命(課件)-2024-2025學年統(tǒng)編版道德與法治七年級上冊
- 陜西省西安市2023-2024學年七年級上學期期末考試數(shù)學試題(含答案)
- 國家基本醫(yī)療保險和工傷保險藥品目錄(2004年版)
- 文學類文本閱讀(理解賞析類)-2025年北京高考語文一輪總復習(原卷版)
- 北京某中學2024-2025學年九年級上學期開學考數(shù)學試卷
評論
0/150
提交評論