版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、概率論與數(shù)理統(tǒng)計(jì) 第1章 隨機(jī)事件及其概率加法公式P(A+B)=P(A)+P(B)-P(AB)當(dāng)P(AB)0時(shí),P(A+B)=P(A)+P(B)減法公式P(A-B)=P(A)-P(AB)當(dāng)BA時(shí),P(A-B)=P(A)-P(B)當(dāng)A=時(shí),P()=1- P(B)乘法公式乘法公式:更一般地,對(duì)事件A1,A2,An,若P(A1A2An-1)>0,則有。獨(dú)立性?xún)蓚€(gè)事件的獨(dú)立性設(shè)事件、滿足,則稱(chēng)事件、是相互獨(dú)立的。若事件、相互獨(dú)立,且,則有多個(gè)事件的獨(dú)立性設(shè)ABC是三個(gè)事件,如果滿足兩兩獨(dú)立的條件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同時(shí)滿足
2、P(ABC)=P(A)P(B)P(C)全概公式。貝葉斯公式,i=1,2,n。此公式即為貝葉斯公式。,(,),通常叫先驗(yàn)概率。,(,),通常稱(chēng)為后驗(yàn)概率。貝葉斯公式反映了“因果”的概率規(guī)律,并作出了“由果朔因”的推斷。第二章 隨機(jī)變量及其分布連續(xù)型隨機(jī)變量的分布密度設(shè)是隨機(jī)變量的分布函數(shù),若存在非負(fù)函數(shù),對(duì)任意實(shí)數(shù),有, 則稱(chēng)為連續(xù)型隨機(jī)變量。稱(chēng)為的概率密度函數(shù)或密度函數(shù),簡(jiǎn)稱(chēng)概率密度。密度函數(shù)具有下面性質(zhì): 。 離散與連續(xù)型隨機(jī)變量的關(guān)系。積分元在連續(xù)型隨機(jī)變量理論中所起的作用與在離散型隨機(jī)變量理論中所起的作用相類(lèi)似。設(shè)為隨機(jī)變量,是任意實(shí)數(shù),則函數(shù)稱(chēng)為隨機(jī)變量X的分布函數(shù),本質(zhì)上是一個(gè)累積函
3、數(shù)。 可以得到X落入?yún)^(qū)間的概率。分布函數(shù)表示隨機(jī)變量落入?yún)^(qū)間( ,x內(nèi)的概率。1. ;2。 是單調(diào)不減的函數(shù),即時(shí),有 ;3。,;4。 ,即是右連續(xù)的;5. 。對(duì)于離散型隨機(jī)變量,;對(duì)于連續(xù)型隨機(jī)變量, 。 (5)八大分布0-1分布P(X=1)=p, P(X=0)=q二項(xiàng)分布在重貝努里試驗(yàn)中,設(shè)事件發(fā)生的概率為。事件發(fā)生的次數(shù)是隨機(jī)變量,設(shè)為,則可能取值為。, 其中,則稱(chēng)隨機(jī)變量服從參數(shù)為,的二項(xiàng)分布。記為。當(dāng)時(shí),這就是(0-1)分布,所以(0-1)分布是二項(xiàng)分布的特例。泊松分布設(shè)隨機(jī)變量的分布律為,則稱(chēng)隨機(jī)變量服從參數(shù)為的泊松分布,記為或者P()。超幾何分布隨機(jī)變量X服從參數(shù)為n,N,M的超
4、幾何分布,記為H(n,N,M)。幾何分布,其中p0,q=1-p。隨機(jī)變量X服從參數(shù)為p的幾何分布,記為G(p)。均勻分布當(dāng)ax1<x2b時(shí),X落在區(qū)間()內(nèi)的概率為設(shè)隨機(jī)變量的值只落在a,b內(nèi),其密度函數(shù)在a,b上為常數(shù),即 axb 其他指數(shù)分布 , 0, , 其中,則稱(chēng)隨機(jī)變量X服從參數(shù)為的指數(shù)分布。X的分布函數(shù)為記住積分公式 , x<0。 正態(tài)分布設(shè)隨機(jī)變量的密度函數(shù)為其中、為常數(shù),則稱(chēng)隨機(jī)變量服從參數(shù)為、的正態(tài)分布或高斯(Gauss)分布,記為。具有如下性質(zhì):1° 的圖形是關(guān)于對(duì)稱(chēng)的;2° 當(dāng)時(shí),為最大值;若,則的分布函數(shù)為是
5、不可求積函數(shù),其函數(shù)值,已編制成表可供查用。(-x)1-(x)且(0)。如果,則。 函數(shù)分布離散型已知的分布列為 ,的分布列(互不相等)如下:,若有某些相等,則應(yīng)將對(duì)應(yīng)的相加作為的概率。連續(xù)型先利用X的概率密度f(wàn)X(x)寫(xiě)出Y的分布函數(shù)FY(y)P(g(X)y),再利用變上下限積分的求導(dǎo)公式求出fY(y)。第三章 二維隨機(jī)變量及其分布連續(xù)型對(duì)于二維隨機(jī)向量,如果存在非負(fù)函數(shù),使對(duì)任意一個(gè)其鄰邊分別平行于坐標(biāo)軸的矩形區(qū)域D,即D=(X,Y)|a<x<b,c<y<d有則稱(chēng)為連續(xù)型隨機(jī)向量;并稱(chēng)f(x,y)為=(X,Y)的分布密度或稱(chēng)為X和Y的聯(lián)合分布密度。分布密度
6、f(x,y)具有下面兩個(gè)性質(zhì):(1) f(x,y)0;(2) 離散型與連續(xù)型的關(guān)系邊緣分布離散型X的邊緣分布為;Y的邊緣分布為。連續(xù)型X的邊緣分布密度為Y的邊緣分布密度為離散型有零不獨(dú)立連續(xù)型f(x,y)=fX(x)fY(y)直接判斷,充要條件:可分離變量正概率密度區(qū)間為矩形隨機(jī)變量的函數(shù)若X1,X2,Xm,Xm+1,Xn相互獨(dú)立, h,g為連續(xù)函數(shù),則:h(X1,X2,Xm)和g(Xm+1,Xn)相互獨(dú)立。特例:若X與Y獨(dú)立,則:h(X)和g(Y)獨(dú)立。例如:若X與Y獨(dú)立,則:3X+1和5Y-2獨(dú)立。函數(shù)分布 Z=X+Y根據(jù)定義計(jì)算:態(tài)分布的和仍為正態(tài)分布()。n個(gè)相互獨(dú)立的正態(tài)分布的線性組
7、合,仍服從正態(tài)分布。, Z=max,min(X1,X2,Xn)若相互獨(dú)立,其分布函數(shù)分別為,則Z=max,min(X1,X2,Xn)的分布函數(shù)為:分布設(shè)n個(gè)隨機(jī)變量相互獨(dú)立,且服從標(biāo)準(zhǔn)正態(tài)分布,可以證明它們的平方和W我們稱(chēng)隨機(jī)變量W服從自由度為n的分布記為所謂自由度是指獨(dú)立正態(tài)隨機(jī)變量的個(gè)數(shù),它是隨機(jī)變量分布中的一個(gè)重要參數(shù)。分布滿足可加性:設(shè)則t分布設(shè)X,Y是兩個(gè)相互獨(dú)立的隨機(jī)變量,且可以證明函數(shù)我們稱(chēng)隨機(jī)變量T服從自由度為n的t分布,記為T(mén)t(n)。F分布設(shè),且X與Y獨(dú)立,可以證明我們稱(chēng)隨機(jī)變量F服從第一個(gè)自由度為n1,第二個(gè)自由度為n2的F分布,記為Ff(n1, n2).第四章 隨機(jī)變量
8、的數(shù)字特征(1)一維隨機(jī)變量的數(shù)字特征離散型連續(xù)型期望期望就是平均值設(shè)X是離散型隨機(jī)變量,其分布律為P()pk,k=1,2,n,(要求絕對(duì)收斂)設(shè)X是連續(xù)型隨機(jī)變量,其概率密度為f(x),(要求絕對(duì)收斂)函數(shù)的期望Y=g(X) Y=g(X)方差D(X)=EX-E(X)2,標(biāo)準(zhǔn)差, (2)期望的性質(zhì)(1) E(C)=C(2) E(CX)=CE(X)(3) E(X+Y)=E(X)+E(Y),(4) E(XY)=E(X) E(Y),充分條件:X和Y獨(dú)立; 充要條件:X和Y不相關(guān)。(3)方差的性質(zhì)(1) D(C)=0;E(C)=C(2) D(aX)=a2D(X); E(aX)=aE(X)(3) D(a
9、X+b)= a2D(X); E(aX+b)=aE(X)+b(4) D(X)=E(X2)-E2(X)(5) D(X±Y)=D(X)+D(Y),充分條件:X和Y獨(dú)立; 充要條件:X和Y不相關(guān)。 D(X±Y)=D(X)+D(Y) ±2E(X-E(X)(Y-E(Y),無(wú)條件成立。而E(X+Y)=E(X)+E(Y),無(wú)條件成立。(4)常見(jiàn)分布的期望和方差期望方差0-1分布p二項(xiàng)分布np泊松分布幾何分布超幾何分布均勻分布指數(shù)分布正態(tài)分布n2nt分布0(n>2)二維隨機(jī)變量數(shù)字特征期望函數(shù)的期望方差協(xié)方差對(duì)于隨機(jī)變量X與Y,稱(chēng)它們的二階混合中心矩為X與Y的協(xié)方差或相關(guān)矩,
10、記為,即與記號(hào)相對(duì)應(yīng),X與Y的方差D(X)與D(Y)也可分別記為與。相關(guān)系數(shù)對(duì)于隨機(jī)變量X與Y,如果D(X)>0, D(Y)>0,則稱(chēng)為X與Y的相關(guān)系數(shù),記作(有時(shí)可簡(jiǎn)記為)。|1,當(dāng)|=1時(shí),稱(chēng)X與Y完全相關(guān):完全相關(guān)而當(dāng)時(shí),稱(chēng)X與Y不相關(guān)。以下五個(gè)命題是等價(jià)的:;cov(X,Y)=0;E(XY)=E(X)E(Y);D(X+Y)=D(X)+D(Y);D(X-Y)=D(X)+D(Y).協(xié)方差的性質(zhì)(i) cov (X, Y)=cov (Y, X);(ii) cov(aX,bY)=ab cov(X,Y);(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);
11、(iv) cov(X,Y)=E(XY)-E(X)E(Y).獨(dú)立和不相關(guān)若隨機(jī)變量X與Y相互獨(dú)立,則;反之不真。(2)中心極限定理列維林德伯格定理設(shè)隨機(jī)變量X1,X2,相互獨(dú)立,服從同一分布,且具有相同的數(shù)學(xué)期望和方差:,則隨機(jī)變量的分布函數(shù)Fn(x)對(duì)任意的實(shí)數(shù)x,有此定理也稱(chēng)為獨(dú)立同分布的中心極限定理。棣莫弗拉普拉斯定理設(shè)隨機(jī)變量為具有參數(shù)n, p(0<p<1)的二項(xiàng)分布,則對(duì)于任意實(shí)數(shù)x,有第六章 樣本及抽樣分布常見(jiàn)統(tǒng)計(jì)量及其性質(zhì)樣本均值樣本方差樣本標(biāo)準(zhǔn)差樣本k階原點(diǎn)矩樣本k階中心矩,其中,為二階中心矩(2)正態(tài)總體下的四大分布正態(tài)分布設(shè)為來(lái)自正態(tài)總體的一個(gè)樣本,則樣本函數(shù)t分布其中t(n-1)表示自由度為n-1的t分布。設(shè)為來(lái)自正態(tài)總體的一個(gè)樣本,則樣本函數(shù)設(shè)為來(lái)自正態(tài)總體的一個(gè)樣本,則表示自由度為n-1的分布分布F分布設(shè)為來(lái)自正態(tài)總體的一
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國(guó)郵政集團(tuán)公司松原市分公司招聘7人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)電信湖北十堰分公司招聘17人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)建筑第二工程局限公司招聘實(shí)習(xí)生40人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)華電集團(tuán)限公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中共佛山市禪城區(qū)委組織部公開(kāi)招聘專(zhuān)業(yè)技術(shù)崗位雇員1人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年福建福安市事業(yè)單位本科以上學(xué)歷畢業(yè)生歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年深圳事業(yè)單位密卷+考前決勝資料高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年浙江臨海事業(yè)單位招聘工作人員歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年廣東韶關(guān)市樂(lè)昌市民政局招聘專(zhuān)職工作人員3人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年宜昌市交通運(yùn)輸局公開(kāi)招聘事業(yè)單位人員擬聘歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 江西省景德鎮(zhèn)市2023-2024學(xué)年高二上學(xué)期1月期末質(zhì)量檢測(cè)數(shù)學(xué)試題 附答案
- 《銷(xiāo)售人員回款培訓(xùn)》課件
- GB/T 45008-2024稀土熱障涂層材料鋯酸釓鐿粉末
- 全國(guó)第三屆職業(yè)技能大賽(數(shù)字孿生應(yīng)用技術(shù))選拔賽理論考試題庫(kù)(含答案)
- 保險(xiǎn)公司2024年工作總結(jié)(34篇)
- 物理實(shí)驗(yàn)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋沈陽(yáng)理工大學(xué)
- 2024年01月22503學(xué)前兒童健康教育活動(dòng)指導(dǎo)期末試題答案
- 應(yīng)用數(shù)理統(tǒng)計(jì)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋中國(guó)農(nóng)業(yè)大學(xué)
- 網(wǎng)絡(luò)信息安全工程師招聘面試題及回答建議(某大型國(guó)企)2025年
- 肺癌的介入治療護(hù)理
- 2024年世界職業(yè)院校技能大賽中職組“嬰幼兒保育組”賽項(xiàng)考試題庫(kù)-上(單選題)
評(píng)論
0/150
提交評(píng)論