版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、邊坡穩(wěn)定重力和滲透力易引起天然邊坡、開挖形成的邊坡、堤防邊坡和土壩的不穩(wěn)定性。最重要的邊坡破壞的類型如圖9.1所示。在旋滑中,破壞面局部的形狀可能是圓弧或非圓弧線。總的來說,勻質土為圓弧滑動破壞,而非勻質土為非圓弧滑動破壞。平面滑動和復合滑動發(fā)生在那些強度差異明顯的相鄰地層的交界面處。平面滑動易發(fā)生在相鄰地層處于邊坡破壞面以下相對較淺深度的地方:破壞面多為平面,且與邊坡大致平行。復合滑動通常發(fā)生在相鄰地層處于深處的地段,破壞面由圓弧面和平面組成。 在實踐中極限平衡法被用于邊坡穩(wěn)定分析當中。它假定破壞面是發(fā)生在沿著一個假想或破壞面的點上的。土的有效抗剪強度與保持極限平衡狀態(tài)所要求的抗剪強度相比,
2、就可以得到沿著破壞面上的平均平安系數。問題以二維考慮,即假想為平面應變的情況。二維分析為三維碟形面解答提供了保守的結果。在這種分析方法中,應用總應力法,適用于完全飽和粘土在不條件排水下的情況。如建造完工的瞬間情況。這種分析中只考慮力矩平衡。此間,假定潛在破壞面為圓弧面。圖9.2展示了一個試驗性破壞面圓心O,半徑r,長度La。潛在的不穩(wěn)定性取決于破壞面以上土體的總重量(單位長度上的重量W。為了到達平衡,必須沿著破壞面?zhèn)鬟f的抗剪強度表示如下:其中 F 是就抗剪強度而言的平安系數關于 O點力矩平衡: 因此 (9.1) 其它外力的力矩必須亦予以考慮。在張裂開展過程中,如圖9.2所示,如果裂隙中充滿水,
3、弧長La會變短,超孔隙水壓力將垂直作用在裂隙上。有必要用一系列試驗性破壞面來對邊坡進行分析,從而確定最小的平安系數。 基于幾何相似原理,泰勒9.9發(fā)表了?穩(wěn)定系數?,用于在總應力方面對勻質土邊坡進行分析。對于一個高度為H的邊坡,沿著平安系數最小的破壞面上的穩(wěn)定系數(Ns)為: (9.2)對于u =0的情況, Ns 的值可以從圖9.3中得到。Ns值取決于邊坡坡角和高度系數 D,其中DH 是到穩(wěn)固地層的深度。吉布森和摩根斯特恩9.3發(fā)表了?不排水強度cu(u =0)隨深度線性變化的正常固結粘土邊坡的穩(wěn)定系數?。在這種方法中,潛在破壞面再次被假定為以O為圓心,以r為半徑的圓弧。試驗性破壞面AC以上的
4、土體ABCD,如圖9.5所示,被垂直劃分為一系列寬度為b的條塊。每個條塊的底邊假定為直線。對于任何一個條塊來說,其底邊與水平線的夾角為,它的高,從中心線測量,為h。平安系數定義為有效抗剪強度(f)與保持邊限平衡狀態(tài)的抗剪強度(m)的比值,即: 每個條塊的平安系數取相同值,說明條塊之間必須互相支持,即條塊間必須有力的作用。 作用于條塊上的力條塊每個單元維上法向力如下:1.條塊總重量,W=b h適當時用sat2.作用于底邊上總法向力,N等于l。總體上,這個力有兩局部:有效法向力N等于l 和邊界孔隙水壓力U等于ul,其中u是底邊中心的孔隙水壓力,而l是底邊長度。3.底邊上的剪力,T=ml。4.側面上
5、總法向力, E1和E2。5.側面上總剪力,X1 和X2任何的外力也必須包含在分析之中。這是一種靜不定問題,為了得到解決,就必須對于條塊間作用力E 和X作出假定:平安系數的最終解答是不準確的??紤]到圍繞O點的力矩,破壞弧AC上的剪力T的力矩總和,必須與土體ABCD重量所產生的力矩相等。對于任何條塊,W的力臂為rsin,因此Tr=Wr sin那么, 對于有效應力方面的分析:或者 (9.3) 其中La是弧AC的長度。公式9.3是準確的,但是當確定力N時引入了近似。對于給定的破壞面,F的取值將決定于力N的計算方法。 在這種解法中,假定對于任何一個條塊,條間的相互作用力為零。解答包括了解出每個條塊垂直于
6、底邊的作用力,即:N=WCOS-ul因此,在有效應力方面的平安系數公式9.3,由下式計算: (9.4)對于每個條塊,Wcos和Wsin可以通過圖表法確定。的取值可以通過測量或計算得到。同樣地,也必須選擇一系列試驗性的破壞面來獲得最小的平安系數。這種解法所得的平安系數:與更精確的分析方法相比,其誤差通常為5-2%。 應用總應力法分析時,使用參數Cu 和u,公式9.4中u取零。如果u=0,那么平安系數為: (9.5) 因為N沒有出現在公式9.5中,故得到的平安系數F值是精確的。在這種解法中,假定條塊側面的力是水平的,即:Xl-X2=0為了到達平衡,任何一個條塊底邊上的剪力為: 解答垂直方向上的力:
7、 (9.6)很方便得到: l=b sec從公式9.3,通過一些重新整理, (9.7)孔隙水壓力通過孔壓比,可以與任何點的與總“填充壓力相聯系,定義為: (9.8)(適當時用sat)對于任何條塊, 因此公式9.7可寫為: (9.9) 因為平安系數出現在公式9.9的兩邊,必須使用一系列近似,才能獲得解答,但收斂很快?;谟嬎愕闹貜托?,需要選擇充分數量的試驗性破壞面。條分法特別適合于計算機解答??梢砸敫鼜碗s的邊坡幾何學和不同的土層。 在大多數問題中,孔壓力比的取值ru在整個破壞面上是不一致的,但一旦存在獨立的高孔壓區(qū),通常在設計中采用平均值單位面積上的荷重。同樣的,這種方法確定的平安系數過低,但誤
8、差不超過7,多數情況下小于2。斯班瑟 9.8 提出了一種分析方法,在此法中,條塊間的作用力是水平的,且滿足力和力矩平衡。斯班瑟得到了只滿足力矩平衡的畢肖普簡化解,其精確度取決于邊坡條塊間作用力力矩平衡的不敏感性。 基于公式9.9的勻質土邊坡的穩(wěn)定系數,是由畢肖普和摩根斯特恩9.2發(fā)表的。由此可見,對于給定坡角和給定土性的邊坡,平安系數隨u 線性變化,因此可以表示為:F=m-u (9.10)其中m和n是穩(wěn)定系數。系數 m 和 n 是,, c/及深度系數 D的函數。假定潛在破壞面與邊坡面平行,所在深度與邊坡長度相比很小。那么,邊坡可以看作無限長,忽略端部效應。邊坡與水平線成角,破壞面深度為z如圖9
9、.7中所示。水位線在破壞面以上高度mz (0m1)處,與邊坡平行。假定穩(wěn)定滲流發(fā)生在與邊坡平行的方向上。任何垂直條塊側面上的力是等值反向的,且破壞面上任意一點的應力狀態(tài)是相同的. 應用有效應力法,沿著破壞面上的土的抗剪強度為: 平安系數為:,和表達為:接下來的特殊情況是需要引起注意的。如果 c=0 和 m=0 (即坡面與破壞面間的土是不完全飽和的),那么: (9.11)如果c=0 和m=1(即水位線與邊坡面一致) ,那么: (9.12)應當注意的是,當c=0 時,平安系數是與深度無關的。如果c 大于零,那么平安系數就是z 的函數,如果z 比規(guī)定值還小的話,可能會超過 。 應用總應力分析法,需使
10、用抗剪強度參數cu 和u ,而u取值為零。摩根斯特恩和普萊斯9.4提出了一般分析法,此法滿足所有的邊界條件和平衡條件,破壞面可以是任何形狀,圓弧,非圓弧或符合型。破壞面以上的土體被劃分為一系列垂直的平面,問題通過假定每局部之間垂直邊界上的作用力E 和X的關系 而轉化為靜定。這個假定的形式為X=f(x)E (9.13)其中f(x)是描述隨土體而變化的比值X/E 的形式的任意函數,而是尺寸效應系數。的值是在解平安系數F時一同獲得的。在每個垂直邊界上能夠確定作用力E 和X的值及作用點。對于任意的假定函數 f(x) ,有必要仔細地檢查解答,以確定其在物理學上的合理性即破壞面以上土體中沒有剪切破壞或張力
11、。函數f(x)的選擇對于F的計算值的影響不能超過 5% ,通常假定f(x)=l。 這種分析包含了和F值相互作用的復雜過程,如摩根斯特恩和普萊斯9.5所描述的那樣,計算機的運用是必不可少的。 貝爾9.1 提出了一種滿足所有平衡情況,假定破壞面可能是任何形狀的分析方法。土體被劃分成一系列垂直的條塊,通過沿著破壞面上的法向作用力的假想分配,轉化為靜定問題。 薩爾瑪 9.6 基于條分法開展了一種方法,在此法中,產生極限平衡所要求的臨界地震加速度是確定的。這種分析方法在分析中假定了條塊間垂直作用力的分配。同樣的,滿足所有的平衡條件,破壞面可以是任何形狀。靜平安系數是土的抗剪強度必須減小,以致于臨界加速度
12、為零時的系數。 計算機的使用對于貝爾法和薩爾瑪法來說,是必不可少的。所有的解答必須要檢查,以確保它們在物理學上是可以接受的。Stability of SlopesGravitational and seepage forces tend to cause instability in natural slopes, in slopes formed by excavation and in the slopes of embankments and earth dams. The most important types of slope failure are illustrated in
13、Fig.9.1.In rotational slips the shape of the failure surface in section may be a circular arc or a non-circular curveIn general,circular slips are associated with homogeneous soil conditions and non-circular slips with non-homogeneous conditionsTranslational and compound slips occur where the form o
14、f the failure surface is influenced by the presence of an adjacent stratum of significantly different strengthTranslational slips tend to occur where the adjacent stratum is at a relatively shallow depth below the surface of the slope:the failure surface tends to be plane and roughly parallel to the
15、 slope.Compound slips usually occur where the adjacent stratum is at greater depth,the failure surface consisting of curved and plane sectionsIn practice, limiting equilibrium methods are used in the analysis of slope stability. It is considered that failure is on the point of occurring along an ass
16、umed or a known failure surfaceThe shear strength required to maintain a condition of limiting equilibrium is compared with the available shear strength of the soil,giving the average factor of safety along the failure surfaceThe problem is considered in two dimensions,conditions of plane strain bei
17、ng assumedIt has been shown that a two-dimensional analysis gives a conservative result for a failure on a three-dimensional(dish-shaped) surfaceThis analysis, in terms of total stress,covers the case of a fully saturated clay under undrained conditions, i.e. For the condition immediately after cons
18、tructionOnly moment equilibrium is considered in the analysisIn section, the potential failure surface is assumed to be a circular arc. A trial failure surface(centre O,radius r and length La)is shown in Fig.9.2. Potential instability is due to the total weight of the soil mass(W per unit Length) ab
19、ove the failure surfaceFor equilibrium the shear strength which must be mobilized along the failure surface is expressed aswhere F is the factor of safety with respect to shear strengthEquating moments about O: Therefore (9.1) The moments of any additional forces must be taken into accountIn the eve
20、nt of a tension crack developing ,as shown in Fig.9.2,the arc length La is shortened and a hydrostatic force will act normal to the crack if the crack fills with waterIt is necessary to analyze the slope for a number of trial failure surfaces in order that the minimum factor of safety can be determi
21、ned Based on the principle of geometric similarity,Taylor9.9published stability coefficients for the analysis of homogeneous slopes in terms of total stressFor a slope of height H the stability coefficient (Ns) for the failure surface along which the factor of safety is a minimum is (9.2)For the cas
22、e ofu =0,values of Ns can be obtained from Fig.9.3.The coefficient Ns depends on the slope angleand the depth factor D,where DH is the depth to a firm stratumGibson and Morgenstern 9.3 published stability coefficients for slopes in normally consolidated clays in which the undrained strength cu(u =0)
23、 varies linearly with depthIn this method the potential failure surface,in section,is again assumed to be a circular arc with centre O and radius rThe soil mass (ABCD) above a trial failure surface (AC) is divided by vertical planes into a series of slices of width b, as shown in Fig.9.5.The base of
24、 each slice is assumed to be a straight lineFor any slice the inclination of the base to the horizontal isand the height, measured on the centre-1ine,is h. The factor of safety is defined as the ratio of the available shear strength(f)to the shear strength(m) which must be mobilized to maintain a co
25、ndition of limiting equilibrium, i.e. The factor of safety is taken to be the same for each slice,implying that there must be mutual support between slices,i.e. forces must act between the slicesThe forces (per unit dimension normal to the section) acting on a slice are:1.The total weight of the sli
26、ce,W=b h (sat where appropriate)2.The total normal force on the base,N (equal to l)In general thisforce has two components,the effective normal force N(equal tol ) and the boundary water force U(equal to ul ),where u is the pore water pressure at the centre of the base and l is the length of the bas
27、e3.The shear force on the base,T=ml.4.The total normal forces on the sides, E1 and E2.5.The shear forces on the sides,X1 and X2.Any external forces must also be included in the analysis The problem is statically indeterminate and in order to obtain a solution assumptions must be made regarding the i
28、nterslice forces E and X:the resulting solution for factor of safety is not exact Considering moments about O,the sum of the moments of the shear forces T on the failure arc AC must equal the moment of the weight of the soil mass ABCDFor any slice the lever arm of W is rsin,thereforeTr=Wr sinNow, Fo
29、r an analysis in terms of effective stress,Or (9.3)where La is the arc length ACEquation 9.3 is exact but approximations are introduced in determining the forces NFor a given failure arc the value of F will depend on the way in which the forces N are estimated In this solution it is assumed that for
30、 each slice the resultant of the interslice forces is zeroThe solution involves resolving the forces on each slice normal to the base,i.e.N=WCOS-ulHence the factor of safety in terms of effective stress (Equation 9.3) is given by (9.4)The components WCOSand Wsincan be determined graphically for each
31、 sliceAlternatively,the value of can be measured or calculatedAgain,a series of trial failure surfaces must be chosen in order to obtain the minimum factor of safetyThis solution underestimates the factor of safety:the error,compared with more accurate methods of analysis,is usually within the range
32、 5-2%. For an analysis in terms of total stress the parameters Cu andu are used and the value of u in Equation 9.4 is zeroIf u=0 ,the factor of safety is given by (9.5)As N does not appear in Equation 9.5 an exact value of F is obtainedIn this solution it is assumed that the resultant forces on the
33、sides of theslices are horizontal,i.e.Xl-X2=0For equilibrium the shear force on the base of any slice is Resolving forces in the vertical direction: (9.6)It is convenient to substitute l=b secFrom Equation 9.3,after some rearrangement, (9.7) The pore water pressure can be related to the total fill p
34、ressure at anypoint by means of the dimensionless pore pressure ratio,defined as (9.8)(sat where appropriate)For any slice, Hence Equation 9.7 can be written: (9.9) As the factor of safety occurs on both sides of Equation 9.9,a process of successive approximation must be used to obtain a solution bu
35、t convergence is rapid Due to the repetitive nature of the calculations and the need to select an adequate number of trial failure surfaces,the method of slices is particularly suitable for solution by computerMore complex slope geometry and different soil strata can be introduced In most problems t
36、he value of the pore pressure ratio ru is not constant over the whole failure surface but,unless there are isolated regions of high pore pressure,an average value(weighted on an area basis) is normally used in designAgain,the factor of safety determined by this method is an underestimate but the err
37、or is unlikely to exceed 7and in most cases is less than 2 Spencer 9.8 proposed a method of analysis in which the resultant Interslice forces are parallel and in which both force and moment equilibrium are satisfiedSpencer showed that the accuracy of the Bishop simplified method,in which only moment
38、 equilibrium is satisfied, is due to the insensitivity of the moment equation to the slope of the interslice forces Dimensionless stability coefficients for homogeneous slopes,based on Equation 9.9,have been published by Bishop and Morgenstern 9.2.It can be shown that for a given slope angle and giv
39、en soil properties the factor of safety varies linearly with u and can thus be expressed asF=m-nu (9.10)where,m and n are the stability coefficientsThe coefficients,m and n arefunctions of,,the dimensionless number c/and the depth factor D.Using the Fellenius method of slices,determine the factor of
40、 safety,in terms of effective stress,of the slope shown in Fig.9.6 for the given failure surfaceThe unit weight of the soil,both above and below the water table,is 20 kNm 3 and the relevant shear strength parameters are c=10 kN/m2 and=29.The factor of safety is given by Equation 9.4.The soil mass is
41、 divided into slices l.5 m wide. The weight (W) of each slice is given by W=bh=201.5h=30h kNmThe height h for each slice is set off below the centre of the base and thenormal and tangential components hcosand hsinWcos=30h cosW sin=30h sinThe pore water pressure at the centre of the base of each slic
42、e is taken to bewzw,where zw is the vertical distance of the centre point below the water table (as shown in figure)This procedure slightly overestimates the pore water pressure which strictly should be) wze,where ze is the vertical distance below the point of intersection of the water table and the
43、 equipotential through the centre of the slice baseThe error involved is on the safe sideThe arc length (La) is calculated as 14.35 mmThe results are given inTable 9.1Wcos=3017.50=525kNmW sin=308.45=254kNm(wcos -ul)=525132=393kNmIt is assumed that the potential failure surface is parallel to the sur
44、face of the slope and is at a depth that is small compared with the length of the slope. The slope can then be considered as being of infinite length,with end effects being ignoredThe slope is inclined at angle to the horizontal and the depth of the failure plane is zas shown in section in Fig.9.7.T
45、he water table is taken to be parallel to the slope at a height of mz (0m1)above the failure planeSteady seepage is assumed to be taking place in a direction parallel to the slopeThe forces on the sides of any vertical slice are equal and opposite and the stress conditions are the same at every poin
46、t on the failure planeIn terms of effective stress,the shear strength of the soil along the failure plane is and the factor of safety isThe expressions for,andare:The following special cases are of interestIf c=0 and m=0 (i.e. the soilbetween the surface and the failure plane is not fully saturated)
47、,then (9.11)If c=0 and m=1(i.e. the water table coincides with the surface of the slope),then: (9.12)It should be noted that when c=0 the factor of safety is independent ofthe depth zIf c is greater than zero,the factor of safety is a function of z, and may exceed provided z is less than a critical
48、valueFor a total stress analysis the shear strength parameters cu andu are used with a zero value of u.Morgenstern and Price9.4developed a general analysis in which all boundary and equilibrium conditions are satisfied and in which the failure surface may be any shape,circular,non-circular or compou
49、ndThe soil mass above the failure plane is divided into sections by a number of vertical planes and the problem is rendered statically determinate by assuming a relationship between the forces E and X on the vertical boundaries between each sectionThis assumption is of the formX=f(x)E (9.13)where f(x)is an arbitrary function describing the pattern in which the ratio X/E varies across the soil mass andis a scale factorThe value ofis obtained as pa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版設備購買協(xié)議
- 2025年度疫情防控應急物資儲備中心n95口罩采購合同范本3篇
- 二零二五年度貨運司機勞務派遣合同3篇
- 2025年度大豆綠色種植推廣合作合同范本3篇
- 2025年度綠色有機西瓜產地直銷合作合同范本3篇
- 2025年度不銹鋼板材國際貿易結算及風險管理合同3篇
- 2024行政合同爭議調解程序:如何有效運用行政優(yōu)先權3篇
- 2025年度WPS合同管理平臺定制開發(fā)與實施合同3篇
- 二零二五年甘肅離崗創(chuàng)業(yè)人員社保接續(xù)與待遇保障合同3篇
- 2025年物流配送與快遞快遞行業(yè)風險管理合同范本3篇
- 中國的世界遺產智慧樹知到期末考試答案2024年
- 2023年貴州省銅仁市中考數學真題試題含解析
- 世界衛(wèi)生組織生存質量測量表(WHOQOL-BREF)
- 《葉圣陶先生二三事》第1第2課時示范公開課教學PPT課件【統(tǒng)編人教版七年級語文下冊】
- 某送電線路安全健康環(huán)境與文明施工監(jiān)理細則
- GB/T 28885-2012燃氣服務導則
- PEP-3心理教育量表-評估報告
- 控制性詳細規(guī)劃編制項目競爭性磋商招標文件評標辦法、采購需求和技術參數
- 《增值稅及附加稅費申報表(小規(guī)模納稅人適用)》 及其附列資料-江蘇稅務
- 中南民族大學中文成績單
- 危大工程安全管理措施方案
評論
0/150
提交評論