版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Questions From YesterdayEquation 2: r-to-z transformEquation is correctComparable to other p-value estimates (z = r sqrtn)ANOVA will not be able to detect a group effect that has alternating + and ICCEffect defined in terms of between and within group variability rather than being represented indivi
2、duallySPSS Advanced Models can be ordered at the VU Bookstore for $511Hierarchical Linear Modeling (HLM)Theoretical introductionIntroduction to HLMHLM equationsHLM interpretation of your data setsBuilding an HLM modelDemonstration of HLM softwarePersonal experience with HLM tutorial2General Informat
3、ion and TerminologyHLM can be used on data with many levels but we will only consider 2-level modelsThe lowest level of analysis is Level 1 (L1), the second lowest is Level 2 (L2), and so onIn group research, Level 1 corresponds to the individual level and Level 2 corresponds to the group levelYour
4、DV has to be at the lowest level3When Should You Use HLM?If you have mixed variablesIf you have different number of observations per groupIf you think a regression relationship varies by groupAny time your data has multiple levels4What Does HLM Do?Fits a regression equation at the individual levelLe
5、ts parameters of the regression equation vary by group membershipUses group-level variables to explain variation in the individual-level parametersAllows you to test for main effects and interactions within and between levels5The Level 1 Regression EquationPredicts the value of your DV from the valu
6、es of your L1 IVs (example uses 2)Equation has the general form of Yij = B0j + B1j * X1ij + B2j * X2ij + rij“i” refers to the person number and “j” refers to the group numberSince the coefficients B0, B1, and B2 change from group to group they have variability that we can try to explain6Level 2 Equa
7、tionsPredict the value of the L1 parameters using values of your L2 IVs (example uses 1)Sample equations:B0j = G00 + G01 * W1j + u0j B1j = G10 + G11 * W1j + u1j B2j = G20 + G21 * W1j + u2j You will have a separate equation for each parameter7Combined ModelWe can substitute the L2 equations into the
8、L1 equation to see the combined modelYij = G00 + G01 * W1j + u0j + (G10 + G11 * W1j + u1j) X1ij + (G20 + G21 * W1j + u2j) X2ij + rijCannot estimate this using normal regressionHLM estimates the random factors from the model with MLE and the fixed factors with LSE8CenteringL1 regression equation: Yij
9、 = B0j + B1j * X1ij + B2j * X2ij + rijB0j tells us the value of Yij when X1ij = 0 and X2ij = 0Interpretation of B0j therefore depends on the scale of X1ij and X2ij “Centering” refers to subtracting a value from an X to make the 0 point meaningful9Centering (continued)If you center the Xs on their gr
10、oup mean (GPM) then B0 represents the group mean on Yij If you center the Xs on the grand mean (GRM) then B0 represents the group mean on Yij adjusted for the groups average value on the XsYou can also center an X on a meaningful fixed value10Estimating the ModelAfter you specify the L1 and L2 param
11、eters you need to estimate your parametersWe can examine the within and between group variability of L1 parameters to estimate the reliability of the analysisWe examine estimates of L2 parameters to test theoretical factors11Interpreting Level 2 Intercept ParametersL2 intercept equationB0j = G00 + G
12、01 * W1j + u0j G00 is the average intercept across groupsIf Xs are GPM centered, G01 is the relationship between W1 and the group mean (main effect of W1)If Xs are GRM centered, G01 is the relationship between W1 and the adjusted group meanu0 is the unaccounted group effect12Interpreting Level 2 Slo
13、pe ParametersL2 slope equation B1j = G10 + G11 * W1j + u1j G10 is the average slope (main effect of X)G11 is relationship between W1 and the slope (interaction between X and W)u1 is the unaccounted group effect13Building a HLM ModelStart by fitting a random coefficient modelAll L1 variables includedL2 equations only have intercept and errorExamine the L2 output for each parameterIf there is no random effect then parameter does not vary by groupIf there is no random effect and no intercept then the parameter is not needed in the model14Building a HLM Model (continued)Build the full intercep
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 垃圾清運(yùn)服務(wù)合同報(bào)價(jià)
- 預(yù)制構(gòu)件購買協(xié)議書
- 抽樣誤差與假設(shè)檢驗(yàn)
- 九年級(jí)化學(xué)上冊 3.2 制取氧氣 氧氣的制取教案2 (新版)粵教版
- 二年級(jí)品德與生活下冊 快樂的六一 2教案 人教新課標(biāo)版
- 高中信息技術(shù)《走近人工智能》教學(xué)設(shè)計(jì)
- 2024-2025學(xué)年高中歷史 第8單元 第27課 世紀(jì)之交的世界格局教案 新人教版必修1
- 廣東省廉江市實(shí)驗(yàn)學(xué)校高中政治 11.1 面對經(jīng)濟(jì)全球化教案(必修1)
- 2024秋八年級(jí)英語上冊 Module 2 My home town and my country Unit 3 Language in use教學(xué)設(shè)計(jì)(新版)外研版
- 租賃空窗期合同(2篇)
- 電氣設(shè)備安裝工程勞務(wù)單價(jià)表
- 《滾動(dòng)軸承 》ppt課件
- 求異思維換個(gè)度
- 礦山改造電氣節(jié)能降耗分析
- 村級(jí)財(cái)務(wù)清理報(bào)告
- (完整版)工業(yè)與民用配電設(shè)計(jì)手冊(總27頁)
- 新人教版二年級(jí)上冊數(shù)學(xué)第八單元教材分析
- 項(xiàng)目管理中常用英語(實(shí)用收藏)
- 應(yīng)急準(zhǔn)備和響應(yīng)流程圖
- VR試衣間——“虛擬現(xiàn)實(shí)的試衣間平臺(tái)”
- 能源審計(jì)報(bào)告
評(píng)論
0/150
提交評(píng)論