版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1 答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1函數(shù)(其中是自然對(duì)數(shù)的底數(shù))的大致圖像為( )ABCD2已知集合的所有三個(gè)元素的子集記為記為集
2、合中的最大元素,則()ABCD3若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)的模為( )AB4C2D4已知,且,則在方向上的投影為( )ABCD5集合,則( )ABCD6設(shè)a=log73,c=30.7,則a,b,c的大小關(guān)系是()ABCD7若x,y滿足約束條件且的最大值為,則a的取值范圍是( )ABCD8的展開式中的系數(shù)為( )A5B10C20D309函數(shù)的一個(gè)單調(diào)遞增區(qū)間是( )ABCD10已知若(1-ai )( 3+2i )為純虛數(shù),則a的值為 ( )ABCD11已知,為兩條不同直線,為三個(gè)不同平面,下列命題:若,則;若,則;若,則;若,則.其中正確命題序號(hào)為( )ABCD12已知等差數(shù)列的公差不為
3、零,且,構(gòu)成新的等差數(shù)列,為的前項(xiàng)和,若存在使得,則( )A10B11C12D13二、填空題:本題共4小題,每小題5分,共20分。13已知二項(xiàng)式的展開式中各項(xiàng)的二項(xiàng)式系數(shù)和為512,其展開式中第四項(xiàng)的系數(shù)_14記實(shí)數(shù)中的最大數(shù)為,最小數(shù)為.已知實(shí)數(shù)且三數(shù)能構(gòu)成三角形的三邊長,若,則的取值范圍是.15若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是_.16已知為正實(shí)數(shù),且,則的最小值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)為響應(yīng)“堅(jiān)定文化自信,建設(shè)文化強(qiáng)國”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺(tái)計(jì)劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的
4、數(shù)據(jù)采集中,在某高中學(xué)校隨機(jī)抽取了120名學(xué)生做調(diào)查,統(tǒng)計(jì)結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系?男生女生總計(jì)喜歡閱讀中國古典文學(xué)不喜歡閱讀中國古典文學(xué)總計(jì)(2)為做好文化建設(shè)引領(lǐng),實(shí)驗(yàn)組把該校作為試點(diǎn),和該校的學(xué)生進(jìn)行中國古典文學(xué)閱讀交流.實(shí)驗(yàn)人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個(gè)代表中有2名男生代表和2名女生代表喜歡中國古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表
5、參加座談會(huì),記為參加會(huì)議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.18(12分)已知?jiǎng)訄A過定點(diǎn),且與直線相切,動(dòng)圓圓心的軌跡為,過作斜率為的直線與交于兩點(diǎn),過分別作的切線,兩切線的交點(diǎn)為,直線與交于兩點(diǎn)(1)證明:點(diǎn)始終在直線上且;(2)求四邊形的面積的最小值19(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長度滿足需求).設(shè),且滿足.(1)求;(2)若,求的最大值.20(12分)已知在多面體中,平面平面,且四邊形為正方形,且/,點(diǎn),分別是,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.21(12分)在如圖所示的幾何體中,四邊形ABCD
6、為矩形,平面ABEF平面ABCD,EFAB,BAF90,AD2,ABAF2EF2,點(diǎn)P在棱DF上(1)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;(2)若二面角DAPC的正弦值為,求PF的長度22(10分)已知是等腰直角三角形,分別為的中點(diǎn),沿將折起,得到如圖所示的四棱錐()求證:平面平面()當(dāng)三棱錐的體積取最大值時(shí),求平面與平面所成角的正弦值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】 由題意得,函數(shù)點(diǎn)定義域?yàn)榍遥远x域關(guān)于原點(diǎn)對(duì)稱, 且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱, 故選D.2B【解析】分類
7、討論,分別求出最大元素為3,4,5,6的三個(gè)元素子集的個(gè)數(shù),即可得解.【詳解】集合含有個(gè)元素的子集共有,所以在集合中:最大元素為的集合有個(gè);最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以故選:【點(diǎn)睛】此題考查集合相關(guān)的新定義問題,其本質(zhì)在于弄清計(jì)數(shù)原理,分類討論,分別求解.3D【解析】由復(fù)數(shù)的綜合運(yùn)算求出,再寫出其共軛復(fù)數(shù),然后由模的定義計(jì)算模【詳解】,故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,考查共軛復(fù)數(shù)與模的定義,屬于基礎(chǔ)題4C【解析】由向量垂直的向量表示求出,再由投影的定義計(jì)算【詳解】由可得,因?yàn)?,所以故在方向上的投影為故選:C【點(diǎn)睛】本題考查向量的數(shù)量積與投影掌握向量垂直與
8、數(shù)量積的關(guān)系是解題關(guān)鍵5D【解析】利用交集的定義直接計(jì)算即可.【詳解】,故,故選:D.【點(diǎn)睛】本題考查集合的交運(yùn)算,注意常見集合的符號(hào)表示,本題屬于基礎(chǔ)題.6D【解析】,得解【詳解】,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法7A【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可【詳解】作出約束條件表示的可行域,如圖所示.因?yàn)榈淖畲笾禐椋栽邳c(diǎn)處取得最大值,則,即.故選:A【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵8C【解析】由知,展開式中項(xiàng)有兩項(xiàng),一項(xiàng)是中的項(xiàng),另一項(xiàng)是與中含x的項(xiàng)乘積構(gòu)成.【詳解】由已知,因
9、為展開式的通項(xiàng)為,所以展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查求二項(xiàng)式定理展開式中的特定項(xiàng),解決這類問題要注意通項(xiàng)公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.9D【解析】利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡(jiǎn)表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).10A【解析】根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡(jiǎn)可得,根據(jù)純虛數(shù)的概
10、念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.11C【解析】根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,則,故正確;若,平面可能相交,故錯(cuò)誤;若,則可能平行,故錯(cuò)誤;由線面垂直的性質(zhì)可得,正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.12D【解析】利用等差數(shù)列的通項(xiàng)公式可得,再利用等差數(shù)列的前項(xiàng)和公式即可求解.【詳解】由,構(gòu)成等差數(shù)列可得即又解得:又所以時(shí),.故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式,需熟記
11、公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先令可得其展開式各項(xiàng)系數(shù)的和,又由題意得,解得,進(jìn)而可得其展開式的通項(xiàng),即可得答案.【詳解】令,則有,解得,則二項(xiàng)式的展開式的通項(xiàng)為,令,則其展開式中的第4項(xiàng)的系數(shù)為,故答案為:【點(diǎn)睛】此題考查二項(xiàng)式定理的應(yīng)用,解題時(shí)需要區(qū)分展開式中各項(xiàng)系數(shù)的和與各二項(xiàng)式系數(shù)和,屬于基礎(chǔ)題.14【解析】試題分析:顯然,又,當(dāng)時(shí),作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點(diǎn)分別是(1,1)和,從而當(dāng)時(shí),作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點(diǎn)分別是(1,1)和,從而綜上所述,的取值范圍是考點(diǎn):不等式、簡(jiǎn)單線性規(guī)劃.15【解
12、析】先求得復(fù)數(shù),再由復(fù)數(shù)模的計(jì)算公式即得.【詳解】,則.故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算和求復(fù)數(shù)的模,是基礎(chǔ)題.16【解析】,所以有,再利用基本不等式求最值即可.【詳解】由已知,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.故答案為:【點(diǎn)睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)見解析,沒有(2)見解析,【解析】(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷出沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計(jì)算公式,計(jì)算
13、出分布列并求得數(shù)學(xué)期望.【詳解】(1)男生女生總計(jì)喜歡閱讀中國古典文學(xué)423072不喜歡閱讀中國古典文學(xué)301848總計(jì)7248120所以,沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)設(shè)參加座談會(huì)的男生中喜歡中國古典文學(xué)的人數(shù)為,女生中喜歡古典文學(xué)的人數(shù)為,則.且;.所以的分布列為則.【點(diǎn)睛】本小題主要考查列聯(lián)表獨(dú)立性檢驗(yàn),考查隨機(jī)變量分布列和數(shù)學(xué)期望的求法,考查數(shù)據(jù)處理能力,屬于中檔題.18(1)見解析(2)最小值為1【解析】(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點(diǎn)的坐標(biāo).寫出直線的方程,聯(lián)立直線的方程和
14、曲線的方程,根據(jù)韋達(dá)定理求得點(diǎn)的坐標(biāo),并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值【詳解】(1)動(dòng)圓過定點(diǎn),且與直線相切,動(dòng)圓圓心到定點(diǎn)和定直線的距離相等,動(dòng)圓圓心的軌跡是以為焦點(diǎn)的拋物線,軌跡的方程為:,設(shè),直線的方程為:,即:,同理,直線的方程為:,由可得:, 直線方程為:,聯(lián)立可得:, ,點(diǎn)始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:, 四邊形的面積為:,當(dāng)且僅當(dāng)或,即時(shí)取等號(hào),四邊形的面積的最小值為1.【點(diǎn)睛】本小題主要考查動(dòng)點(diǎn)軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中
15、四邊形面積的最值的計(jì)算,考查運(yùn)算求解能力,屬于中檔題.19(1)(2)【解析】(1)利用正弦定理和余弦定理化簡(jiǎn),根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),由,根據(jù)正弦定理和余弦定理得.化簡(jiǎn)整理得.由勾股定理逆定理得.(2)設(shè),由(1)的結(jié)論知.在中,由,所以.在中,由,所以.所以,由,所以當(dāng),即時(shí),取得最大值,且最大值為.【點(diǎn)睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識(shí).20(1)證明見解析;(2).【解析】(1)構(gòu)造直線所
16、在平面,由面面平行推證線面平行;(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過點(diǎn)交于點(diǎn),連接,如下圖所示:因?yàn)槠矫嫫矫?,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因?yàn)闉橹悬c(diǎn),故可得/,為中點(diǎn);又因?yàn)樗倪呅螢榈妊菪?,是的中點(diǎn),故可得/;又,且平面,平面,故面面,又因?yàn)槠矫?,故?即證.(2)連接,作交于點(diǎn),由(1)可知平面,又因?yàn)?,故可得平面,則;又因?yàn)?,故可得即,兩兩垂直,則分別以,為,軸建立空間直角坐標(biāo)系,則,設(shè)面的法向量為,則,則,可取,設(shè)平面的法向量為,則,則,可取,可知
17、平面與平面所成的銳二面角的余弦值為.【點(diǎn)睛】本題考查由面面平行推證線面平行,涉及用向量法求二面角的大小,屬綜合基礎(chǔ)題.21(1)(2)【解析】(1)以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,則(1,0,2),(2,1,1),計(jì)算夾角得到答案.(2)設(shè),01,計(jì)算P(0,2,22),計(jì)算平面APC的法向量(1,1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計(jì)算得到答案.【詳解】(1)BAF90,AFAB,又平面ABEF平面ABCD,且平面ABEF平面ABCDAB,AF平面ABCD,又四邊形ABCD為矩形,以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直
18、角坐標(biāo)系,AD2,ABAF2EF2,P是DF的中點(diǎn),B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(1,0,2),(2,1,1),設(shè)異面直線BE與CP所成角的平面角為,則cos,異面直線BE與CP所成角的余弦值為(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設(shè)P(a,b,c),01,即(a,b,c2)(0,2,2),解得a0,b2,c22,P(0,2,22),(0,2,22),(2,2,0),設(shè)平面APC的法向量(x,y,z),則,取x1,得(1,1,),平面ADP的法向量(1,0,0),二面角DAPC的正弦值為,|cos|,解得,P(0,),PF的長度|PF|【點(diǎn)睛】本題考查了異面直線夾角,根據(jù)二面角求長度,意在考查學(xué)生的空間想象能力和計(jì)算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 音樂企業(yè)文化建設(shè)技術(shù)服務(wù)合同(2篇)
- 蘇教版江蘇省無錫市重點(diǎn)中學(xué)2023-2024學(xué)年高一上學(xué)期期中數(shù)學(xué)試題
- 美寶蓮口紅課件
- 校園風(fēng)景 課件
- 西京學(xué)院《造型基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2.1.2植物細(xì)胞第一課時(shí)
- 初二下收心班會(huì)
- 西京學(xué)院《機(jī)械設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷
- 陽光下的影子
- 西華師范大學(xué)《中國音樂史與名作賞析》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024年銀行考試-招商銀行歷年考試高頻考點(diǎn)試題附帶答案
- 2024肺栓塞指南解讀2024
- 造價(jià)-人員配備方案1
- 中學(xué)教代會(huì)代表選舉辦法
- 醫(yī)院藥房二維碼溯源管理
- 四川省涼山州2023-2024學(xué)年七年級(jí)上學(xué)期期末檢測(cè)歷史試卷
- 青島市特殊建設(shè)工程消防驗(yàn)收辦事指南
- 北京市西城區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 初中九年級(jí)化學(xué)課件復(fù)分解反應(yīng)的條件“百校聯(lián)賽”一等獎(jiǎng)
- 冷庫安全施工方案
- 《企劃案撰寫》課件
評(píng)論
0/150
提交評(píng)論