2022屆廣西北流市明瑞高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第1頁
2022屆廣西北流市明瑞高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第2頁
2022屆廣西北流市明瑞高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第3頁
2022屆廣西北流市明瑞高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第4頁
2022屆廣西北流市明瑞高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知,且,則在方向上的投影為( )ABCD2執(zhí)行如圖所示的程序框圖,若輸入,則輸出的( )A4B5C6D73設(shè)集合Ay|y2x1,xR,Bx|2x3,xZ,則AB( )A(1,3B1,3C0,1,2,3D1,0,1,2,34五行學(xué)說是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為( )ABCD5已知數(shù)列 中, ,若對于

3、任意的,不等式恒成立,則實數(shù)的取值范圍為( )ABCD6函數(shù)(其中,)的圖象如圖,則此函數(shù)表達式為( )ABCD7如果,那么下列不等式成立的是( )ABCD8蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎(chǔ)的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率( )ABCD9某四棱錐的三視圖如圖所示,該幾何體的體積是( )A8BC4D10已知函數(shù),當(dāng)時,不等式恒成立,則實數(shù)a的取值范圍為( )ABCD11已知,為圓上的動點,過點作與垂直的直線交直線于點,

4、若點的橫坐標(biāo)為,則的取值范圍是( )ABCD12函數(shù)在上的圖象大致為( )A B C D 二、填空題:本題共4小題,每小題5分,共20分。13已知集合,則_14若,則_.15如圖,從一個邊長為的正三角形紙片的三個角上,沿圖中虛線剪出三個全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個缺少上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱柱的上底,則所得正三棱柱的體積為_.16函數(shù)的定義域為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.18

5、(12分)如圖,在四棱錐中,平面, 底面是矩形,分別是,的中點.()求證:平面;()設(shè), 求三棱錐的體積.19(12分)在角中,角A、B、C的對邊分別是a、b、c,若(1)求角A;(2)若的面積為,求的周長20(12分)設(shè)數(shù)列是公差不為零的等差數(shù)列,其前項和為,若,成等比數(shù)列(1)求及;(2)設(shè),設(shè)數(shù)列的前項和,證明:21(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點 (1)求證:平面; (2)求二面角的正切值22(10分)如圖,四棱錐PABCD的底面是梯形BCAD,ABBCCD1,AD2,()證明;ACBP;()求直線AD與平面APC所成角的正

6、弦值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】由向量垂直的向量表示求出,再由投影的定義計算【詳解】由可得,因為,所以故在方向上的投影為故選:C【點睛】本題考查向量的數(shù)量積與投影掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵2C【解析】根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程序框圖的計算,解題的關(guān)鍵是理解程序框圖運行的過程.3C【解析】先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可【詳解】解:集合Ay|y2x1,xRy|y1,Bx|2x3,xZ2,1,0,1,2,3,

7、AB0,1,2,3,故選:C【點睛】本題主要考查集合的交集運算,屬于基礎(chǔ)題4A【解析】列舉出金、木、水、火、土任取兩個的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準(zhǔn)基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;

8、(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.5B【解析】先根據(jù)題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即 由累加法可得: 即對于任意的,不等式恒成立即 令 可得且即 可得或故選B【點睛】本題主要考查了數(shù)列的通項的求法以及函數(shù)的性質(zhì)的運用,屬于綜合性較強的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項公式和后面的轉(zhuǎn)化函數(shù),屬于難題.6B【解析】由圖象的頂點坐標(biāo)求出,由周期求出,通過圖象經(jīng)過點,求出,從而得出

9、函數(shù)解析式.【詳解】解:由圖象知,則,圖中的點應(yīng)對應(yīng)正弦曲線中的點,所以,解得,故函數(shù)表達式為故選:B.【點睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.7D【解析】利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】,.故選:D.【點睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.8A【解析】計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎(chǔ)題.9D【解析】根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合

10、圖形求出底面積代入體積公式求它的體積【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力屬于中等題.10D【解析】由變形可得,可知函數(shù)在為增函數(shù), 由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時是單調(diào)增函數(shù).則恒成立. .令,則時,單調(diào)遞減,時單調(diào)遞增.故選:D.【點睛】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時求解參數(shù)問題,考查學(xué)生的分析問題的能力和計算求解的能力,難度較

11、難.11A【解析】由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.12C【解析】根據(jù)函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關(guān)于原點對稱,排除選項A,B;當(dāng)時,排除選項D,故選:C.【點睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】解一元二次不等式化簡集合,再進行集合的交

12、運算,即可得到答案.【詳解】,.故答案為:.【點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎(chǔ)題.14【解析】由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計算得解【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題151【解析】由題意得正三棱柱底面邊長6,高為,由此能求出所得正三棱柱的體積【詳解】如圖,作,交于,由題意得正三棱柱底面邊長,高為,所得正三棱柱的體積為:故答案為:1

13、【點睛】本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結(jié)構(gòu)特征等基礎(chǔ)知識,考查空間想象能力、運算求解能力,求解時注意翻折前后的不變量16【解析】對數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對函數(shù)有意義,即.故答案為:【點睛】本題考查求對數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析(2)證明見解析【解析】(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因為為平行四邊形,為其中心,所以,為中點,又因為為中點,所以,又平面,平

14、面所以,平面;(2)作于因為平面平面,平面平面,平面,所以,平面又平面,所以又,平面,平面所以,平面,又平面,所以,.【點睛】此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關(guān)鍵在于熟練掌握相關(guān)判定定理,找出平行關(guān)系和垂直關(guān)系證明.18()見解析()【解析】()取中點,連,根據(jù)平行四邊形,可得,進而證得平面平面,利用面面垂直的性質(zhì),得平面,又由,即可得到平面.()根據(jù)三棱錐的體積公式,利用等積法,即可求解.【詳解】()取中點,連,由,可得,可得是平行四邊形,則,又平面,平面平面,平面,平面,平面平面,是中點,則,而平面平面,而,平面.()根據(jù)三棱錐的體積公式,得 .【點睛】本題主要考查

15、了空間中線面位置關(guān)系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,以及合理利用“等體積法”求解是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.19(1);(2)1.【解析】(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A(0,),可求A=(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解ABC的周長的值【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB0,所以sinA=cosA,即:tanA=,因為A(0,),所

16、以A=;(2)由(1)可知A=,且a=5,又由ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以ABC的周長a+b+c=5+7=1【點睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題20(1),;(2)證明見解析.【解析】(1)根據(jù)題中條件求出等差數(shù)列的首項和公差,然后根據(jù)首項和公差即可求出數(shù)列的通項和前項和;(2)根據(jù)裂項求和求出,根據(jù)的表達式即可證明.【詳解】(1

17、)設(shè)的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數(shù)列基本量的求解,裂項求和法,屬于基礎(chǔ)題.21 (1)見證明;(2) 【解析】(1)取PD中點G,可證EFGA是平行四邊形,從而, 得證線面平行;(2)取AD中點O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得【詳解】(1)證明:取PD中點G,連結(jié)為的中位線,且, 又且,且,EFGA是平行四邊形,則, 又面,面, 面; (2)解:取AD中點O,連結(jié)PO, 面面,為正三角形,面,且, 連交于,可得,則,即 連,又,可得平面,則, 即是二面角的平面角, 在中,即二面角的正切值為【點睛】本題考查線面平行證明,考查求二面角求二面角的步驟是一作二證三計算即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算22()見解析()【解析】(I)取的中點,連接,通過證明平面得出;(II)以為原點建立坐標(biāo)系,求出平面的法向量,通過計算與的夾角得出與平面所成角【詳解】(I)證明:取AC的中點M,連接PM,BM,ABBC,PAPC,ACBM,ACPM,又BMPMM,AC平面PBM,BP平面PBM,ACBP(II)解:底面ABCD是梯形BCAD,ABBCCD1,AD2,ABC12

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論