




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Topic 3: Point EstimationOptimal Criterion of EstimationMaximum Likelihood Estimation Uniformly Minimum Variance Unbiased Estimate Method of MomentsOLS and Regularized Estimation Kernel Density EstimationSection 3: Uniformly Minimum Variance Unbiased Estimate Definition of UMVUE (一致最小方差無偏估計(jì))Methods
2、to construct UMVUECramer-Rao inequalityUMVUEUMVUEOnly consider the case of unbiased estimator exits The smaller the variance, the better the estimatorIf an unbiased estimator has the smallest variance among all the unbiased estimators, then it is called UMVUE (一致最小方差無偏估計(jì)).UMVUE (definition)Methods t
3、o construct UMVUEZero unbiased estimate methodSufficient and complete statistic methodCramer-Rao inequalityLemma 1Remark 1. Lemma 1 provides a method to improve the unbiased estimateRemark 2. UMVUE must be a function of sufficient statistic if exitsProof of Lemma 1Proof of Lemma 1Example 15Is h(T) a
4、 UMVUE?Zero Unbiased Estimate MethodRemark 2. In fact, the condition in Theorem 7 is sufficient and necessaryRemark 1. l(X) is an “unbiased estimate” of 0Remark 3. It can be used to verify whether a given statistic is UMVUE, but cannot be used to construct UMVUEZero Unbiased Estimate MethodZero Unbi
5、ased Estimate MethodExample 15 (continue)Example 15 (continue)Example 4 (continue)Example 10 (continue)Example 10 (continue)RemarkSufficient and Complete Statistic Method Sufficient and Complete Statistic MethodExamples Example 15 (cont)Example 16Example 16Example 17Cramer-Rao InequalityProvide a lo
6、wer bound for the variance of unbiased estimator C-R lower boundProved by C. R. Rao in 1945 and H. Cramer in 1946Drawback: The variance of UMVUE can be larger than the C-R lower boundUsed in the definition of efficiency, effective estimation, Fisher informationC-R Regularity Distribution FamilySingl
7、e Parameter C-R InequalityFisher InformationProofProofRemarkIf an unbiased estimator obtains the C-R lower bound of variance, then it is the UMVUEThe regularity conditions hold for exponential familyThe variance of UMVUE can be larger than the C-R lower boundThe equality holds only if the distributi
8、on family is an exponential familyEven for exponential family, only a few unbiased estimates can obtained the C-R lower boundExample 18Example 19Example 20Example 21C-R Inequality for Multidimensional Parameters Example 22Example 22Efficiency and Effective EstimationRemark. To talk about effective e
9、stimate, the distribution should satisfy regularity conditions required in Theorem 9. Section 4: Method of MomentDefinition and examplesPropertiesMethod of MomentMethod of MomentExample 23Remark.Example 24Example 25Example 26PropertiesPropertiesSection 5: Ordinary Least Squares (OLS) and Regularized
10、 EstimateLinear regression modelOLS estimateRegularized estimate (Ridge estimate)Linear Regression ModelExample 27: Ames Housing DataInformation from the Ames Assessors Office used in computing assessed values for individual residential properties sold in Ames, Iowa (愛荷華州) from 2006 to 20102000 obse
11、rvations, 82 variables 23 nominal, 23 ordinal, 14 discrete, and 20 continuous variables, 2 IDAmes Housing DataAmes Housing DataAmes Housing DataLinear Regression ModelIntercept Population slopes Random error Linear Regression ModelLinear Regression ModelBasic AssumptionsBasic AssumptionsMLE under No
12、rmal AssumptionSimple Linear RegressionSome ConceptsPopulation regression equation (line)Samples or data Sample regression equation (line)Fitted valuesResidualsExample: Little Women“Little Women” (Berkeley course on Data Science) Each row: one chapterGoal: predict the number of characters based on t
13、he number of periodsLittle Women (r = 0.92)Regression LineRegression LineRegression LineRegression LineMean Squared Error (Residual Sum of Squares)Mean Squared Error (Residual Sum of Squares)Mean Squared Error (Residual Sum of Squares)What we need now is one overall measure of the rough size of the
14、errors (residuals)errors are likely to be positive and others negativeTo avoid cancellation when measuring the rough size of the errors, we will take the mean of the squared errors rather than the mean of the errors themselvesCalculate Squared Error (or Residual Sum of Squares): Ordinary Least Squar
15、es (OLS)OLS: minimizing the MSEThe Least Squares Line (unique)Why squared error?Explicit formula, easy to computeLeast Absolute DeviationOLS for Multivariate RegressionOLS for Multivariate RegressionExample: Ames House Datalm(SalePrice Gr_Liv_Area + Lot_Area + Full_Bath + Bedroom_AbvGr + Central_Air
16、, data = HousePrice_train)Properties of OLSMulticollinearityMulticollinearity: SourcesIf all predictors are orthogonal, then multicollinearity is not a problemFour primary sourcesThe data collection method employed house size vs. electricity consumptionConstraints on the model or in the populationFa
17、mily e (x1) = salary (x2) + bonus and other e (x3)Dummy variable: red + blue + greenModel specificationPolynomial termsAn over-defined model High-dimensional: # predictors # observationsLongleys Economic Regression DataA macroeconomic data set which provides a well-known example for a highly colline
18、ar regressionJ. W. Longley (1967) An appraisal of least-squares programs from the point of view of the user.Journal of the American Statistical Association62, 819841.7 economical variables, observed yearly from 1947 to 1962 (n=16)GNP.deflator (國(guó)民生產(chǎn)總值平均物價(jià)指數(shù))GNP (國(guó)民生產(chǎn)總值)Unemployed (失業(yè)人數(shù))Armed.Forces (
19、從軍人數(shù))Population (不小于14歲的非住院人口)Year (年份)Employed (就業(yè)人數(shù))Longleys Economic Regression Data e MulticollinearityRidge RegressionHoerl and Kennard (1970)Goal: improve the estimation and prediction accuracy of the OLS when there exits multicollinearityill-conditioned design matrix, e.g., too many predictor
20、s Bias-variance trade-off (OLS is UMVLUE)Bias-Variance Trade-offRidge RegressionRidge estimate is the solution of the following convex optimizationRidge RegressionTuning ParameterRidge Coefficient Paths (Solution paths)Figure: Ridge coefficient path for the Longleys economic regression data lambdaco
21、efficientGNPUnemployedArmed.ForcesPopulationYearEmployedRidge RegressionCross ValidationMore on Training and TestingIdeally, we would separate our available data into both training and test setsOf course, this is not always possible, especially if we have a few observationsHope to come up with the b
22、est-trained algorithm (estimate) that will stand up to the testHow can we try to find the best-trained algorithm?ExampleRemarkHigh Dimensional DataHigh-dimensional statistics and sparse modeling has been active research areas for the last two decadesHigh-dimensional refers to the situation where the
23、 number of parameters (or covariates) is comparable to or much larger than the sample sizeInformation technology, bioinformatics, astronomy, High Dimensional DataHigh Dimensional DatafMRI (functional magnetic resonance imaging;功能性磁共振成像)long-term interdisciplinary project by the Gallant Neuroscience Lab and Prof. Bin Yus group at UC Berkeley that studies primate visual pathwaysFor a particular voxel (2 2 2.5 millimeters) in a hum
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)優(yōu)化練習(xí)題+參考答案
- 季度述職報(bào)告模板
- 管理會(huì)計(jì)(第三版)教案 模塊七 長(zhǎng)期投資決策的分析與應(yīng)用(10學(xué)時(shí))
- 老年人用具常見護(hù)理及使用
- 校本課程開發(fā)及實(shí)施方案
- 不銹鋼建材購銷合同范例
- bt融資合同范例
- 修車場(chǎng)轉(zhuǎn)讓合同范例
- 農(nóng)村物流加盟合同范例
- 修剪合同范例
- 2024年全國(guó)職業(yè)院校技能大賽(節(jié)水系統(tǒng)安裝與維護(hù)賽項(xiàng))考試題庫(含答案)
- GJB9001C-2017版標(biāo)準(zhǔn)培訓(xùn)課件
- 公益服務(wù)調(diào)研報(bào)告范文
- 電影配樂合同模板
- 2024年銅陵職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫完美版
- 充電樁施工環(huán)境保護(hù)方案
- 江蘇省南京市高三2024-2025學(xué)年上學(xué)期第一次學(xué)情調(diào)研英語試題(解析版)
- 中古時(shí)期的世界(練習(xí))-2025年高考?xì)v史一輪復(fù)習(xí)(新教材新高考)
- 《化工設(shè)備機(jī)械基礎(chǔ)(第8版)》完整全套教學(xué)課件
- 2024版《糖尿病健康宣教》課件
- 敬老院考勤管理制度范本
評(píng)論
0/150
提交評(píng)論