2022屆北京市房山區(qū)房山高三沖刺模擬數(shù)學試卷含解析_第1頁
2022屆北京市房山區(qū)房山高三沖刺模擬數(shù)學試卷含解析_第2頁
2022屆北京市房山區(qū)房山高三沖刺模擬數(shù)學試卷含解析_第3頁
2022屆北京市房山區(qū)房山高三沖刺模擬數(shù)學試卷含解析_第4頁
2022屆北京市房山區(qū)房山高三沖刺模擬數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距

2、離等于,那么下列結(jié)論中,一定正確的是ABCD2根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是( )A至少有一個樣本點落在回歸直線上B若所有樣本點都在回歸直線上,則變量同的相關(guān)系數(shù)為1C對所有的解釋變量(),的值一定與有誤差D若回歸直線的斜率,則變量x與y正相關(guān)3若復數(shù)()是純虛數(shù),則復數(shù)在復平面內(nèi)對應的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限4執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是( )ABCD5如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內(nèi)部的一些虛線構(gòu)成的,則該幾何體的體積為( )ABC6D與點O的位置有關(guān)6

3、如圖,正方體中,分別為棱、的中點,則下列各直線中,不與平面平行的是( )A直線B直線C直線D直線7寧波古圣王陽明的傳習錄專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“”表示一根陽線,“”表示一根陰線)從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為( )ABCD8在邊長為2的菱形中,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為( )ABCD9設(shè)Py |yx21,xR,Qy |y2x,xR,則AP QBQ PCQDQ 10半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同

4、的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )ABCD11設(shè)是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A若,則B若,,則C若,則D若,則12已知函數(shù),對任意的,當時,則下列判斷正確的是( )AB函數(shù)在上遞增C函數(shù)的一條對稱軸是D函數(shù)的一個對稱中心是二、填空題:本題共4小題,每小題5分,共20分。13某中學數(shù)學競賽培訓班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖

5、所示,若甲組5名同學成績的平均數(shù)為81,乙組5名同學成績的中位數(shù)為73,則x- y的值為_14在平面直角坐標系中,點P在直線上,過點P作圓C:的一條切線,切點為T.若,則的長是_.15若函數(shù)在和上均單調(diào)遞增,則實數(shù)的取值范圍為_16已知函數(shù),對于任意都有,則的值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),它的導函數(shù)為(1)當時,求的零點;(2)當時,證明:18(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點分別為、,求證:.19(12分)如圖,在四棱錐中,和均為邊長為的等邊三角形.(1)求證:平面平面;(

6、2)求二面角的余弦值.20(12分)設(shè)函數(shù)(1)當時,求不等式的解集;(2)若對任意都有,求實數(shù)的取值范圍21(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.22(10分)若函數(shù)在處有極值,且,則稱為函數(shù)的“F點”.(1)設(shè)函數(shù)().當時,求函數(shù)的極值;若函數(shù)存在“F點”,求k的值;(2)已知函數(shù)(a,b,)存在兩個不相等的“F點”,且,求a的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有

7、4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關(guān)系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.2D【解析】對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上故A錯誤;所有樣本點都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關(guān),故D正確故選D【點睛】本題主要考查線性回歸方程的性質(zhì),意

8、在考查學生對該知識的理解掌握水平和分析推理能力.3B【解析】化簡復數(shù),由它是純虛數(shù),求得,從而確定對應的點的坐標【詳解】是純虛數(shù),則,對應點為,在第二象限故選:B【點睛】本題考查復數(shù)的除法運算,考查復數(shù)的概念與幾何意義本題屬于基礎(chǔ)題4B【解析】根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時不能輸出,繼續(xù)循環(huán);第二步:,此時不能輸出,繼續(xù)循環(huán);第三步:,此時不能輸出,繼續(xù)循環(huán);第四步:,此時不能輸出,繼續(xù)循環(huán);第五步:,此時不能輸出,繼續(xù)循環(huán);第六步:,此時要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖

9、,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.5B【解析】根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結(jié)論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構(gòu)成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關(guān)鍵,屬于基礎(chǔ)題.6C【解析】充分利用正方體的幾何特征,利用線面平行的判定定理,根據(jù)判斷A的正誤.根據(jù),判斷B的正誤.根據(jù)與 相交,判斷C的正誤.根據(jù),判斷D的正誤.【

10、詳解】在正方體中,因為 ,所以 平面,故A正確. 因為,所以,所以平面 故B正確.因為,所以平面,故D正確.因為與 相交,所以 與平面 相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.7B【解析】根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故

11、選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎(chǔ)題.8D【解析】取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,即點O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.9C【解析】解:因為P =y|y=-x2+1,

12、xR=y|y1,Q =y| y=2x,xR =y|y0,因此選C10D【解析】根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.11C【解析】在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,

13、與平行或【詳解】設(shè)是兩條不同的直線,是兩個不同的平面,則:在A中,若,則與相交或平行,故A錯誤;在B中,若,則或,故B錯誤;在C中,若,則由線面垂直的判定定理得,故C正確;在D中,若,則與平行或,故D錯誤故選C【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,是中檔題12D【解析】利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,函數(shù), 對于A,故A錯誤;對于B,由,解得,故B錯誤;對于C,當時,故C錯誤; 對于D,由,故D正確.故選:D【點睛】本題

14、考查了簡單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學成績的平均數(shù)為,解得;又乙班5名同學的中位數(shù)為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據(jù)莖葉圖計算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.14【解析】作出圖像,設(shè)點,根據(jù)已知可得,且,可解出,計算即得.【詳解】如圖,設(shè),圓心坐標為,可得,解得,即的長是.故答案為:【點睛】本題考查直線與圓的位置關(guān)系,以及求平面兩點間的距離,運用了數(shù)形結(jié)合的思

15、想.15【解析】化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可【詳解】由知,當時,在和上單調(diào)遞增,在和上均單調(diào)遞增,的取值范圍為:故答案為:【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題16【解析】由條件得到函數(shù)的對稱性,從而得到結(jié)果【詳解】ff,x是函數(shù)f(x)2sin(x)的一條對稱軸f2.【點睛】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點或最低點,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析;(2)證明見解析.【解析】當時,求函數(shù)的導數(shù),判斷導函數(shù)的單

16、調(diào)性,計算即為導函數(shù)的零點;當時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明【詳解】(1)的定義域為當時,易知為上的增函數(shù),又,所以是的唯一零點; (2)證明:當時,若,則,所以成立,若,設(shè),則,令,則,因為,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點睛】本題主要考查導數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點的求法注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應用18(1);(2)見解析.【解析】(1)利用導數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點和極小值點分別為、,由(1)知,且滿足,于是得出,由得,利用正切函數(shù)的單調(diào)性推導出,

17、再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】(1),當時,則函數(shù)在上單調(diào)遞增;當時,則函數(shù)在上單調(diào)遞減;當時,則函數(shù)在上單調(diào)遞增.,.所以,函數(shù)在與不存在零點,在區(qū)間和上各存在一個零點.綜上所述,函數(shù)在區(qū)間上的零點的個數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點,所以,函數(shù)在區(qū)間與上各存在一個極值點、,且,且滿足即,又,即,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.【點睛】本題考查利用導數(shù)研究函數(shù)的零點個數(shù)問題,同時也考查了利用導數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.19 (1)見證明;(2) 【解析】(1) 取的中點,連接,要證平面平面,轉(zhuǎn)證平面,即證, 即可;(2) 以

18、為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出平面與平面的法向量,代入公式,即可得到結(jié)果.【詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,且因為,所以,所以,又因為,平面,平面,所以平面.又因為平面,所以平面平面.(2)因為,為等邊三角形,所以,又因為,所以,在中,由正弦定理,得:,所以.以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,則,設(shè)平面的法向量為,則,即,令,則平面的一個法向量為,依題意,平面的一個法向量所以故二面角的余弦值為.【點睛】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求

19、出相應直線的方向向量;(3)設(shè)出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應的角和距離.20(1)(2)【解析】利用零點分區(qū)間法,去掉絕對值符號分組討論求并集,對恒成立,則,由三角不等式,得求解【詳解】解:當時,不等式即為,可得或或,解得或或,則原不等式的解集為 若對任意、都有,即為, 由,當取得等號,則,由,可得,則的取值范圍是【點睛】本題考查含有兩個絕對值符號的不等式解法及利用三角不等式解恒成立問題. (1)含有兩個絕對值符號的不等式常用解法可用零點分區(qū)間法去掉絕對值符號,將其轉(zhuǎn)化為與之等價的不含絕對值符號的

20、不等式(組)求解(2)利用三角不等式把不等式恒成立問題轉(zhuǎn)化為函數(shù)最值問題.21(1)證明見解析(2)【解析】(1)取中點,連結(jié),證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結(jié),為直角,平面,平面,面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設(shè)平面的一個法向量為.則,其中,不妨取,則.為銳二面角,二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.22(1)極小值為1,無極大值.實數(shù)k的值為1.(2)【解析】(1)將代入可得,求導討論函數(shù)單調(diào)性,即得極值;設(shè)是函數(shù)的一個“F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論