2022屆山西太原師范學(xué)院高三壓軸卷數(shù)學(xué)試卷含解析_第1頁(yè)
2022屆山西太原師范學(xué)院高三壓軸卷數(shù)學(xué)試卷含解析_第2頁(yè)
2022屆山西太原師范學(xué)院高三壓軸卷數(shù)學(xué)試卷含解析_第3頁(yè)
2022屆山西太原師范學(xué)院高三壓軸卷數(shù)學(xué)試卷含解析_第4頁(yè)
2022屆山西太原師范學(xué)院高三壓軸卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1 答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球

2、,在能蓋住蓋子的情況下,最多能裝( )(附:)A個(gè)B個(gè)C個(gè)D個(gè)2如圖,在正方體中,已知、分別是線段上的點(diǎn),且.則下列直線與平面平行的是( )ABCD3下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是( )ABCD4執(zhí)行下面的程序框圖,則輸出的值為 ( )ABCD5使得的展開式中含有常數(shù)項(xiàng)的最小的n為( )ABCD6已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為( )AB3CD7過拋物線的焦點(diǎn)的直線交該拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).若,則直線的斜率為( )ABCD8已知函數(shù)()的部分圖象如圖所示,且,則的最小值為( )ABCD9若直線與圓相交所得弦長(zhǎng)為,則( )A

3、1B2CD310將一張邊長(zhǎng)為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是( )ABCD11已知為等比數(shù)列,則( )A9B9CD12若實(shí)數(shù)、滿足,則的最小值是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知一個(gè)正四棱錐的側(cè)棱與底面所成的角為,側(cè)面積為,則該棱錐的體積為_14直線是曲線的一條切線為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)_.15已知集合U1,3,5,9,A1,3,9,B1,9,則U(AB)_.16在平面直角坐標(biāo)系中,曲線上任意一點(diǎn)到直

4、線的距離的最小值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.()求證:;()若點(diǎn)在線段上,且平面,求二面角的余弦值.18(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.19(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長(zhǎng)度滿足需求).設(shè),且滿足.(1)求;(2)若,求的最大值.20(12分)某貧困地區(qū)幾個(gè)丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路, 以所

5、在的直線分別為軸,軸, 建立平面直角坐標(biāo)系, 如圖所示, 山區(qū)邊界曲線為,設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.(1)當(dāng)為何值時(shí),公路的長(zhǎng)度最短?求出最短長(zhǎng)度;(2)當(dāng)公路的長(zhǎng)度最短時(shí),設(shè)公路交軸,軸分別為,兩點(diǎn),并測(cè)得四邊形中,千米,千米,求應(yīng)開鑿的隧道的長(zhǎng)度.21(12分)如圖,在三棱柱中,已知四邊形為矩形,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.22(10分)在四棱錐中,底面為直角梯形,面.(1)在線段上是否存在點(diǎn),使面,說明理由;(2)求二面角的余弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【

6、解析】計(jì)算球心連線形成的正四面體相對(duì)棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個(gè)球兩兩相切,這樣,相鄰的四個(gè)球的球心連線構(gòu)成棱長(zhǎng)為cm的正面體,易求正四面體相對(duì)棱的距離為cm,每裝兩個(gè)球稱為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個(gè)球故選:【點(diǎn)睛】本題考查了圓柱和球的綜合問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.2B【解析】連接,使交于點(diǎn),連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可

7、得解【詳解】如圖,連接,使交于點(diǎn),連接、,則為的中點(diǎn),在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點(diǎn)睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題3C【解析】分析函數(shù)的定義域和單調(diào)性,然后對(duì)選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)?,在上為減函數(shù).A選項(xiàng),的定義域?yàn)?,在上為增函?shù),不符合.B選項(xiàng),的定義域?yàn)椋环?C選項(xiàng),的定義域?yàn)椋谏蠟闇p函數(shù),符合.D選項(xiàng),的定義域?yàn)?,不符?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.

8、4D【解析】根據(jù)框圖,模擬程序運(yùn)行,即可求出答案.【詳解】運(yùn)行程序,結(jié)束循環(huán),故輸出,故選:D.【點(diǎn)睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.5B【解析】二項(xiàng)式展開式的通項(xiàng)公式為,若展開式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用6B【解析】根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.7D【解析】根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可【詳解】解:拋物線的焦點(diǎn),準(zhǔn)

9、線方程為,設(shè),則,故,此時(shí),即則直線的斜率故選:D【點(diǎn)睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題8A【解析】是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個(gè)零點(diǎn)可得【詳解】由題意,函數(shù)在軸右邊的第一個(gè)零點(diǎn)為,在軸左邊第一個(gè)零點(diǎn)是,的最小值是故選:A.【點(diǎn)睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對(duì)稱性函數(shù)的零點(diǎn)就是其圖象對(duì)稱中心的橫坐標(biāo)9A【解析】將圓的方程化簡(jiǎn)成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因?yàn)橹本€與圓相交所得弦長(zhǎng)為,所以直線過圓心,得,即.故選:A【點(diǎn)睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.10B【解析】設(shè)折成的四

10、棱錐的底面邊長(zhǎng)為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B11C【解析】根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【詳解】,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時(shí), ;當(dāng)時(shí), ,.故選:C【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.12D【解析】根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故

11、選:D.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】如圖所示,正四棱錐,為底面的中心,點(diǎn)為的中點(diǎn),則,設(shè),根據(jù)正四棱錐的側(cè)面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點(diǎn)為的中點(diǎn),則,設(shè),.故答案為:.【點(diǎn)睛】本題考查棱錐的側(cè)面積和體積,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.14【解析】根據(jù)切線的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點(diǎn)的坐標(biāo),進(jìn)而求得切線方程,通過對(duì)比系數(shù)求得的值.【詳解】,則,所以切點(diǎn)為,故切線為,即,故.故答

12、案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解曲線的切線方程有關(guān)問題,屬于基礎(chǔ)題.155【解析】易得ABA1,3,9,則U(AB)516【解析】解法一:曲線上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點(diǎn),該點(diǎn)到直線的距離為,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,曲線上任意一點(diǎn)到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點(diǎn)的切線與直線平行,則,解得,當(dāng)時(shí),到直線的距離;當(dāng)時(shí),到直線的距離.所以曲線上任意一點(diǎn)到直線的距離的最小值為.故

13、答案為:.【點(diǎn)睛】本題考查曲線上一點(diǎn)到直線距離最小值的計(jì)算,可轉(zhuǎn)化為利用切線與直線平行來找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線的距離,也可以設(shè)曲線上的動(dòng)點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問題和解決問題的能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17()見解析()【解析】()推導(dǎo)出BCCE,從而EC平面ABCD,進(jìn)而ECBD,再由BDAE,得BD平面AEC,從而BDAC,進(jìn)而四邊形ABCD是菱形,由此能證明AB=AD.()設(shè)AC與BD的交點(diǎn)為G,推導(dǎo)出EC/ FG,取BC的中點(diǎn)為O,連結(jié)OD,則ODBC,以O(shè)為坐標(biāo)原點(diǎn),以過點(diǎn)O且與CE平行的直線為x

14、軸,以BC為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】()證明:,即,因?yàn)槠矫嫫矫?,所以平面,所以,因?yàn)椋云矫?,所以,因?yàn)樗倪呅问瞧叫兴倪呅?,所以四邊形是菱形,故;解法一:()設(shè)與的交點(diǎn)為,因?yàn)槠矫?,平面平面于,所以,因?yàn)槭侵悬c(diǎn),所以是的中點(diǎn),因?yàn)?,取的中點(diǎn)為,連接,則,因?yàn)槠矫嫫矫?,所以面,以為坐?biāo)原點(diǎn),以過點(diǎn)且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標(biāo)系.不妨設(shè),則,設(shè)平面的法向量,則,取,同理可得平面的法向量,設(shè)平面與平面的夾角為,因?yàn)?,所以二面角的余弦值?解法二:()設(shè)與的交點(diǎn)為,因?yàn)槠矫?,平面平面于,所以,?/p>

15、為是中點(diǎn),所以是的中點(diǎn),因?yàn)?,所以平面,所以,取中點(diǎn),連接、,因?yàn)椋?,故平面,所以,即是二面角的平面角,不妨設(shè),因?yàn)椋谥?,所以,所以二面角的余弦值?【點(diǎn)睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關(guān)系進(jìn)而證明線線相等,屬于中檔題.18(1);(2)證明見解析.【解析】(1)分類討論求解絕對(duì)值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當(dāng)時(shí),等價(jià)于,該不等式恒成立, 當(dāng)時(shí),等價(jià)于,該不等式解集為, 當(dāng)時(shí),等價(jià)于,解得, 綜上,或,所以不等式的解集為. (2),易得的最小值為1,即因?yàn)椋?,所以?當(dāng)且僅當(dāng)時(shí)等號(hào)成立.【點(diǎn)睛】本

16、題考查利用分類討論求解絕對(duì)值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.19(1)(2)【解析】(1)利用正弦定理和余弦定理化簡(jiǎn),根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),由,根據(jù)正弦定理和余弦定理得.化簡(jiǎn)整理得.由勾股定理逆定理得.(2)設(shè),由(1)的結(jié)論知.在中,由,所以.在中,由,所以.所以,由,所以當(dāng),即時(shí),取得最大值,且最大值為.【點(diǎn)睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識(shí).20(1)當(dāng)時(shí),公路的長(zhǎng)度最

17、短為千米;(2)(千米).【解析】(1)設(shè)切點(diǎn)的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點(diǎn)間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長(zhǎng)度.【詳解】(1)由題可知,設(shè)點(diǎn)的坐標(biāo)為,又,則直線的方程為,由此得直線與坐標(biāo)軸交點(diǎn)為:,則,故,設(shè),則.令,解得=10.當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù).所以當(dāng)時(shí),函數(shù)有極小值,也是最小值, 所以, 此時(shí).故當(dāng)時(shí),公路的長(zhǎng)度最短,最短長(zhǎng)度為千米.(2) 在中,,所以, 所以,根據(jù)正弦定理,,又, 所以.在中,由勾股定理可得,即,解得,(千米).【

18、點(diǎn)睛】本題考查利用導(dǎo)數(shù)解決實(shí)際的最值問題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實(shí)際應(yīng)用,還考查解題分析能力和計(jì)算能力.21(1)見解析;(2)【解析】(1)過點(diǎn)作交于,連接,設(shè),連接,由角平分線的性質(zhì),正方形的性質(zhì),三角形的全等,證得,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識(shí)和線面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,求得兩個(gè)平面的法向量,根據(jù)二面角的向量計(jì)算公式可求得其值.【詳解】(1)如圖,過點(diǎn)作交于,連接,設(shè),連接,又為的角平分線,四邊形為正方形,又,又為的中點(diǎn),又平面,平面,又平面,平面平面,(2)在中,在中,又,又,平面,平面,故建立如圖空間直角坐標(biāo)系,則,設(shè)平面的一個(gè)法向量為,則,令,得,設(shè)平面的一個(gè)法向量為,則,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.【點(diǎn)睛】本題考查空間的面面垂直關(guān)系的證明,二面角的計(jì)算,在證明垂直關(guān)系時(shí),注意運(yùn)用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對(duì)角線互相垂直,屬于基礎(chǔ)題.22(1)存在;詳見解析(2)【解析】(1)利用面面平行的性質(zhì)定理可得,為上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論