版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值為( )A0B1CD2將一張邊長(zhǎng)為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所
2、示,則正四棱錐的體積是( )ABCD31777年,法國(guó)科學(xué)家蒲豐在宴請(qǐng)客人時(shí),在地上鋪了一張白紙,上面畫(huà)著一條條等距離的平行線,而他給每個(gè)客人發(fā)許多等質(zhì)量的,長(zhǎng)度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對(duì)針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為( )ABCD4已知函數(shù)(),若函數(shù)在上有唯一零點(diǎn),則的值為( )A1B或0C1或0D2或05用數(shù)學(xué)歸納法證明1+2+3+n2=n4+n22,則當(dāng)n=k+1時(shí),左端應(yīng)在n=k的基礎(chǔ)上加上( )Ak2+1Bk+12Ck2+1
3、+k2+2+k+12Dk+14+k+1226下圖所示函數(shù)圖象經(jīng)過(guò)何種變換可以得到的圖象( )A向左平移個(gè)單位B向右平移個(gè)單位C向左平移個(gè)單位D向右平移個(gè)單位7過(guò)拋物線()的焦點(diǎn)且傾斜角為的直線交拋物線于兩點(diǎn).,且在第一象限,則( )ABCD8如圖所示的程序框圖,若輸入,則輸出的結(jié)果是( )ABCD9閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則處應(yīng)填的數(shù)字為A4B5C6D710已知函數(shù)(表示不超過(guò)x的最大整數(shù)),若有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()ABCD11正方形的邊長(zhǎng)為,是正方形內(nèi)部(不包括正方形的邊)一點(diǎn),且,則的最小值為( )ABCD12已知函數(shù)是奇函數(shù),且,若對(duì),恒成立,則的取值
4、范圍是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13現(xiàn)有一塊邊長(zhǎng)為a的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為x的小正方形,然后做成一個(gè)無(wú)蓋方盒,該方盒容積的最大值是_14雙曲線的焦點(diǎn)坐標(biāo)是_,漸近線方程是_.15設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),都有,則_16設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_(kāi).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.()設(shè)直線與曲線交于,兩點(diǎn),求;()若點(diǎn)為曲線上任意一點(diǎn),求的取值范圍.18(12分)如圖,在
5、四棱柱中,底面是正方形,平面平面,.過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn).()求證:;()求證:四邊形是平行四邊形;()若,試判斷二面角的大小能否為?說(shuō)明理由.19(12分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,平面平面,點(diǎn)為棱的中點(diǎn)()在棱上是否存在一點(diǎn),使得平面,并說(shuō)明理由;()當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角20(12分)中的內(nèi)角,的對(duì)邊分別是,若,.(1)求;(2)若,點(diǎn)為邊上一點(diǎn),且,求的面積.21(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點(diǎn),滿足平面.()證明:;()設(shè),若為棱上一點(diǎn),使得直線與平面所成角的大小為30,求的值.22(10分)自湖北武漢爆
6、發(fā)新型冠狀病毒惑染的肺炎疫情以來(lái),武漢醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重缺乏,全國(guó)各地紛紛馳援.截至1月30日12時(shí),湖北省累計(jì)接收捐贈(zèng)物資615.43萬(wàn)件,包括醫(yī)用防護(hù)服2.6萬(wàn)套N95口軍47.9萬(wàn)個(gè),醫(yī)用一次性口罩172.87萬(wàn)個(gè),護(hù)目鏡3.93萬(wàn)個(gè)等.中某運(yùn)輸隊(duì)接到給武漢運(yùn)送物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送720t物資.已知每輛卡車每天往返的次數(shù):A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運(yùn)輸隊(duì)所花的成本最低?參考答案一、選
7、擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,因?yàn)?,所以由程序框圖知,輸出的值為.故選:A【點(diǎn)睛】本題考查了對(duì)數(shù)式大小比較,條件程序框圖的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.2B【解析】設(shè)折成的四棱錐的底面邊長(zhǎng)為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B3D【解析】根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.4C【解析】求出函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時(shí)
8、,根據(jù)函數(shù)的單調(diào)性及零點(diǎn)存在性定理可判斷;【詳解】解:(),當(dāng)時(shí),由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,只需,即.令,則,函數(shù)在上單調(diào)遞增.,;當(dāng)時(shí),函數(shù)在上單調(diào)遞減,函數(shù)在上有且只有一個(gè)零點(diǎn),的值是1或0.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問(wèn)題,零點(diǎn)存在性定理的應(yīng)用,屬于中檔題.5C【解析】首先分析題目求用數(shù)學(xué)歸納法證明1+1+3+n1=n4+n22時(shí),當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上的式子,可以分別使得n=k,和n=k+1代入等式,然后把n=k+1時(shí)等式的左端減去n=k時(shí)等式的左端,即可得到答案【詳解】當(dāng)n=k時(shí),等式左端=1+1+k1,當(dāng)n=k+1時(shí),等式
9、左端=1+1+k1+k1+1+k1+1+(k+1)1,增加了項(xiàng)(k1+1)+(k1+1)+(k1+3)+(k+1)1故選:C【點(diǎn)睛】本題主要考查數(shù)學(xué)歸納法,屬于中檔題./6D【解析】根據(jù)函數(shù)圖像得到函數(shù)的一個(gè)解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,故,即,取,得到,函數(shù)向右平移個(gè)單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.7C【解析】作,;,由題意,由二倍角公式即得解.【詳解】由題意,準(zhǔn)線:,作,;,設(shè),故,.故選:C【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的
10、能力,屬于中檔題.8B【解析】列舉出循環(huán)的每一步,可得出輸出結(jié)果.【詳解】,不成立,;不成立,;不成立,;成立,輸出的值為.故選:B.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,一般要將算法的每一步列舉出來(lái),考查計(jì)算能力,屬于基礎(chǔ)題.9B【解析】考點(diǎn):程序框圖分析:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運(yùn)行過(guò)程中各變量的值的變化情況,不難給出答案解:程序在運(yùn)行過(guò)程中各變量的值如下表示: S i 是否繼續(xù)循環(huán)循環(huán)前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后當(dāng)i5時(shí)退出,故選B10A【
11、解析】根據(jù)x的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個(gè)不同的交點(diǎn),利用數(shù)形結(jié)合進(jìn)行求解即可【詳解】當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),若有且僅有3個(gè)零點(diǎn),則等價(jià)為有且僅有3個(gè)根,即與有三個(gè)不同的交點(diǎn),作出函數(shù)和的圖象如圖,當(dāng)a=1時(shí),與有無(wú)數(shù)多個(gè)交點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),即,時(shí),與有兩個(gè)交點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),即時(shí),與有三個(gè)交點(diǎn),要使與有三個(gè)不同的交點(diǎn),則直線處在過(guò)和之間,即,故選:A【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)的范圍; (2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域
12、(最值)問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解.11C【解析】分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡(jiǎn)求解.【詳解】解:建立以為原點(diǎn),以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),則,由,即,得.所以=,所以當(dāng)時(shí),的最小值為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.12A【解析】先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域?yàn)椋?,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,所以為偶函數(shù),
13、且在上單調(diào)遞增.由,可得,對(duì)恒成立,則,對(duì)恒成立,得,所以的取值范圍是.故選:A.【點(diǎn)睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點(diǎn)也是最大值點(diǎn),此時(shí).故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14 【解析】通過(guò)雙曲線的標(biāo)準(zhǔn)方程,求解,即可得到所求的結(jié)果【詳解】由雙曲線,可得,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,
14、漸近線方程為:故答案為:;【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題15【解析】利用行列式定義,得到與的關(guān)系,賦值,即可求出結(jié)果?!驹斀狻坑?,令,得,解得?!军c(diǎn)睛】本題主要考查行列式定義的應(yīng)用。16【解析】根據(jù)滿足約束條件,畫(huà)出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù) 取得最小值.【詳解】由滿足約束條件,畫(huà)出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn) 此時(shí),目標(biāo)函數(shù) 取得最小值,最小值為故答案為:-1【點(diǎn)睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.三、解答
15、題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17()6()【解析】()化簡(jiǎn)得到直線的普通方程化為,是以點(diǎn)為圓心,為半徑的圓,利用垂徑定理計(jì)算得到答案.()設(shè),則,得到范圍.【詳解】()由題意可知,直線的普通方程化為,曲線的極坐標(biāo)方程變形為,所以的普通方程分別為,是以點(diǎn)為圓心,為半徑的圓,設(shè)點(diǎn)到直線的距離為,則, 所以. ()的標(biāo)準(zhǔn)方程為,所以參數(shù)方程為(為參數(shù)),設(shè),因?yàn)?,所以?所以.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.18(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)不能為.【解析】(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒(méi)有交點(diǎn)
16、,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點(diǎn),延長(zhǎng)交于點(diǎn),連接,根據(jù)三垂線定理,確定二面角的平面角,若,由大角對(duì)大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個(gè)平面沒(méi)有交點(diǎn),則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點(diǎn),延長(zhǎng)交于點(diǎn),連接,由,所以平面,則平面,又,根據(jù)三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,又,所以中,由大角對(duì)大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.
17、【點(diǎn)睛】本題考查了立體幾何中的線線平行和垂直的判定問(wèn)題,和二面角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.19(1)見(jiàn)解析(2)【解析】()取的中點(diǎn),連結(jié)、,得到故且,進(jìn)而得到,利用線面平行的判定定理,即可證得平面.()以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進(jìn)而得到為直線與平面所成的角,即可求解.【詳解】()在棱上存在點(diǎn),使得平面,點(diǎn)為棱的中點(diǎn)理由如下:取的中點(diǎn),連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,又平面,平面,
18、所以,平面.()由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),則由題意知,設(shè)平面的法向量為,則由得,令,則,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線與平面所成的角,易知在中,從而,所以直線與平面所成的角為.【點(diǎn)睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成,著重考查了分析問(wèn)題和解答問(wèn)題的能力.20(1)(2)10【解析】(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計(jì)算即可;(2)由已知可得,利用余弦定理解出,由已知計(jì)算出與,再根據(jù)三角形的面積公式求出結(jié)果即可.【詳解】(1),在中,由正弦定理得,又,(2),由余弦定理得,則,化簡(jiǎn)得,解得或(負(fù)值舍去),的面積.【點(diǎn)睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應(yīng)用,考查了二倍角公式的應(yīng)用,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 認(rèn)識(shí)足球主題課程設(shè)計(jì)
- 2024年城市軌道交通建設(shè)合同書(shū)
- 高支模工程風(fēng)險(xiǎn)評(píng)估與應(yīng)對(duì)方案
- 龍貓線描課程設(shè)計(jì)
- 黑大中文系課程設(shè)計(jì)
- 2024年衛(wèi)星導(dǎo)航系統(tǒng)開(kāi)發(fā)與合作合同
- 小學(xué)語(yǔ)文教學(xué)改革教師團(tuán)隊(duì)協(xié)作與專業(yè)發(fā)展策略
- 2024股權(quán)轉(zhuǎn)讓合同協(xié)議
- 公司員工績(jī)效管理分析
- 2024青島市果菜訂購(gòu)合同書(shū)
- 神經(jīng)外科學(xué):顱內(nèi)腫瘤
- 高一年級(jí)政治上學(xué)期期中試題(人教含答案)
- 結(jié)構(gòu)性心臟病介入治療及并發(fā)癥的臨床處理精編ppt
- 六年級(jí)上冊(cè)心理健康教育課件-戰(zhàn)勝挫折走向成功 全國(guó)通用(共19張PPT)
- 小學(xué)語(yǔ)文人教三年級(jí)上冊(cè)(統(tǒng)編)第五單元-搭船的鳥(niǎo)學(xué)歷案
- 蘇教版三年級(jí)數(shù)學(xué)上冊(cè)《認(rèn)識(shí)千克》教案(南通公開(kāi)課)
- 隨州市炎帝神農(nóng)故里風(fēng)景區(qū)修建性詳細(xì)規(guī)劃
- 日、韓企業(yè)人力資源管理特點(diǎn)及啟示
- 珍愛(ài)生命和法同行
- 一例消化道出血合并高血壓糖尿病患者的護(hù)理查房課件
- 口腔技術(shù)操作規(guī)范全本
評(píng)論
0/150
提交評(píng)論