版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1.1分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(選修23)(第一課時(shí))思考:用一個(gè)大寫的英文字母或一個(gè)阿拉伯?dāng)?shù)字給教室里的座位編號(hào),總共能夠編出多少種不同的號(hào)碼?261036你能說說這個(gè)問題的特征嗎? 最重要特征是“或”字的出現(xiàn),每個(gè)座位可以用一個(gè)英文字母或一個(gè)阿拉伯?dāng)?shù)字編號(hào).由于英文字母、阿拉伯?dāng)?shù)字各不相同,所以其編出的號(hào)碼也不同.從甲地到乙地,可以乘火車或乘汽車一天中,火車有3班,汽車有2班那么一天中,乘這些交通工具從甲地到乙地,共有多少種不同的走法?因?yàn)橐惶熘谐嘶疖囉?種走法,乘汽車有2種走法,每一種走法都可以從甲地到乙地,所以共有:325你能概括上述問題的共同特征嗎? 分類加法計(jì)數(shù)原理完成一
2、件事,有兩類不同方案,在第1類方案中有m種不同的方法,在第2類方案中有n種不同的方法.那么完成這件事共有:種不同的方法兩類不同方案中的方法互不相同例1.在填寫高考志愿表時(shí),一名高中畢業(yè)生了解到,A、B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專業(yè),具體情況如下:A大學(xué)B大學(xué)生物學(xué) 數(shù)學(xué)化學(xué) 會(huì)計(jì)學(xué)醫(yī)學(xué) 信息技術(shù)學(xué)物理學(xué) 法學(xué)工程學(xué)如果這名同學(xué)只能選一個(gè)專業(yè),那么他共有多少種選擇?完成一件事情指的是什么?一件事情是指選擇一個(gè)專業(yè)?探究如果完成一件事情有n類不同方案,在第1類方案中有m1種不同的方法,在第2類方案中有m2種不同的方法,在第n類方案中有mn種不同的方法,那么完成這件事共有 種不同的方法?思考:
3、用一個(gè)大寫的英文字母和一個(gè)阿拉伯?dāng)?shù)字,以A0,A1,的方式給教室里的座位編號(hào),總共能夠編出多少個(gè)不同的號(hào)碼?2610260這個(gè)問題與前一個(gè)問題有什么不同? 完成一件事指的是什么? 得到一個(gè)號(hào)碼必須經(jīng)過先確定一個(gè)英文字母,后確定一個(gè)阿拉伯?dāng)?shù)字這樣兩個(gè)步驟. 你能列出所有號(hào)碼嗎? 窮舉要有規(guī)律,要有序 從甲地到乙地,從甲地選乘火車到丙地,再于次日從丙地乘汽車到乙地一天中,火車有3班,汽車有2班那么兩天中,從甲地到乙地共有多少種不同的走法 ? 這個(gè)問題與前一個(gè)問題不同在前一個(gè)問題中,采用乘火車或汽車中的任何一種方式,都可以從甲地到乙地;而在這個(gè)問題中,必須經(jīng)過先乘火車、后乘汽車兩個(gè)步驟,才能從甲地到
4、乙地這里,因?yàn)槌嘶疖囉?種走法,乘汽車有2種走法,所以乘一次火車再接乘一次汽車從甲地到乙地,共有:326種不同的走法 分步乘法計(jì)數(shù)原理完成一件事需要兩個(gè)步驟,做第1步有m種不同的方法,做第2步有n種不同的方法,那么完成這件事共有:種不同的方法無論第1步采用哪種方法,都不影響第2步方法的選取.例2.某商場(chǎng)有6個(gè)門,如果某人從其中的任意一個(gè)門進(jìn)入商場(chǎng),并且要求從其他的門出去,共有多少種不同的進(jìn)出商場(chǎng)的方式?如果完成一件事情需要分成n個(gè)步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法,做第n步有mn種不同的方法,那么完成這件事共有 種不同的方法?探究分類計(jì)數(shù)原理與分步計(jì)數(shù)原理的區(qū)別與聯(lián)系
5、: 不同點(diǎn):分類計(jì)數(shù)原理與“分類”有關(guān),各種方法相互獨(dú)立,用其中任何一種方法都可以完成這件事;分步計(jì)數(shù)原理與“分步”有關(guān),各個(gè)步驟相互依存,只有各個(gè)步驟都完成了,這件事才算完成 相同點(diǎn):分類計(jì)數(shù)原理與分步計(jì)數(shù)原理都是涉及完成一件事的不同方法的種數(shù)的問題.例3.書架的第1層放有4本不同的計(jì)算機(jī)書,第2層放有3本不同的文藝書,第3層放有2本不同的體育書.(1)從書架中任取1本書,有多少種不同取法?(2)從書架的第1,2,3層各取1本書,有多少種不同取法?例4.要從甲、乙、丙3幅不同的畫中選出2幅,分別掛在左、右兩邊墻上的指定位置,問共有多少種不同的掛法?小 結(jié)用兩個(gè)計(jì)數(shù)原理解決問題時(shí),要仔細(xì)分析需
6、要分類還是分步.分步要做到“不重不漏”.分類要做到“不重不漏”.分類后再分別對(duì)每一類進(jìn)行計(jì)數(shù),最后用分類加法計(jì)數(shù)原理求和,得到總數(shù).完成了所有步驟,恰好完成任務(wù),且步與步之間要相互獨(dú)立.分步后再計(jì)算每一步的方法數(shù),最后根據(jù)分布乘法計(jì)數(shù)原理,把完成每一步的方法數(shù)相乘,得到總數(shù).已知集合A=-2,1,3,B=-3,4,5,-6,從A、B中各取一個(gè)元素分別作為點(diǎn)的橫、縱坐標(biāo),則在第一、第二象限中的不同點(diǎn)共有多少個(gè)? 6個(gè)設(shè)某班有男生30名,女生23名,現(xiàn)要從中選出男、女生各一名代表班級(jí)參加比賽,則有多少種不同的選法?設(shè)某班有男生30名,女生23名,現(xiàn)要從中選出正、副組長(zhǎng)各1名,則有多少種不同的選法?
7、1.1分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(選修23)(第二課時(shí))分類加法計(jì)數(shù)原理完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法分步乘法計(jì)數(shù)原理完成一件事,需要分成n個(gè)步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法,做第n步有mn種不同的方法,那么完成這件事共有:種不同的方法練習(xí)1:乘積(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展開后共有多少項(xiàng)?練習(xí)2:要從甲、乙、丙3名工人中選出2名分別上日班和晚班,有多少種不同的選法? 例5.給程序
8、模塊命名,需要用3個(gè)字符,其中首字符要求用字母AG或UZ,后兩個(gè)要求用數(shù)字19,問最多可以給多少個(gè)程序命名?例6.核糖核酸(RNA)分子是在生物細(xì)胞中發(fā)現(xiàn)的化學(xué)成分,一個(gè)RNA分子是一個(gè)有著數(shù)百個(gè)甚至數(shù)千個(gè)位置的長(zhǎng)鏈,長(zhǎng)鏈中每一個(gè)位置上都由一種稱為堿基的化學(xué)成分所占據(jù).總共有4種不同的堿基,分別用A,C,G,U表示.在一個(gè)RNA分子中,各種堿基能夠以任意次序出現(xiàn),所以在任意一個(gè)位置上的堿基與其他位置上的堿基無關(guān).假設(shè)有一類RNA分子由100個(gè)堿基組成,那么能有多少種不同的RNA分子?例7.電子元件很容易實(shí)現(xiàn)電路的通與斷、電位的高與低等兩種狀態(tài),而這也是最容易控制的兩種狀態(tài).因此計(jì)算機(jī)內(nèi)部就采用
9、了每一位只有0或1兩種數(shù)字的記數(shù)法,即二進(jìn)制.為了使計(jì)算機(jī)能夠識(shí)別字符,需要對(duì)字符進(jìn)行編碼,每個(gè)字符可以用一個(gè)或多個(gè)字節(jié)來表示,其中字節(jié)是計(jì)算機(jī)中數(shù)據(jù)存儲(chǔ)的最小計(jì)量單位,每個(gè)字節(jié)由8個(gè)二進(jìn)制位構(gòu)成,問:(1)一個(gè)字節(jié)(8位)最多可以表示多少個(gè)不同的字符?(2)計(jì)算機(jī)漢字國(guó)標(biāo)碼(GB碼)包含了6763個(gè)漢字,一個(gè)漢字為一個(gè)字符,要對(duì)這些漢字進(jìn)行編碼,每個(gè)漢字至少要用多少個(gè)字節(jié)表示?例8.計(jì)算機(jī)編程人員在編寫好程序以后需要對(duì)程序進(jìn)行測(cè)試.程序員需要知道到底有多少條執(zhí)行路徑(即程序從開始到結(jié)束的路線),以便知道需要提供多少個(gè)測(cè)試數(shù)據(jù).一般地,一個(gè)程序模塊由許多子模塊組成.如圖,它是一個(gè)具有許多執(zhí)行路
10、徑的程序模塊.問:這個(gè)程序模塊有多少條執(zhí)行路徑?開始結(jié)束子模塊118條執(zhí)行路徑子模塊245條執(zhí)行路徑子模塊328條執(zhí)行路徑子模塊438條執(zhí)行路徑子模塊543條執(zhí)行路徑為減少測(cè)試時(shí)間,該如何設(shè)計(jì)測(cè)試方法?例9.隨著人們生活水平的提高,某城市家庭汽車擁有量迅速增長(zhǎng),汽車牌照號(hào)碼需要擴(kuò)容.交通管理部門出臺(tái)了一種汽車牌照組成辦法,每一個(gè)汽車牌照都必須有3個(gè)不重復(fù)的英文字母和3個(gè)不重復(fù)的阿拉伯?dāng)?shù)字,并且3個(gè)字母必須合成一組出現(xiàn),3個(gè)數(shù)字也必須合成一組出現(xiàn),那么這種辦法共能給多少輛汽車上牌照?小 結(jié)用兩個(gè)計(jì)數(shù)原理解決問題時(shí),要仔細(xì)分析需要分類還是分步.分步要做到“不重不漏”.分類要做到“不重不漏”.分類后
11、再分別對(duì)每一類進(jìn)行計(jì)數(shù),最后用分類加法計(jì)數(shù)原理求和,得到總數(shù).完成了所有步驟,恰好完成任務(wù),且步與步之間要相互獨(dú)立.分步后再計(jì)算每一步的方法數(shù),最后根據(jù)分布乘法計(jì)數(shù)原理,把完成每一步的方法數(shù)相乘,得到總數(shù).某電話局管轄范圍內(nèi)的電話號(hào)碼由八位數(shù)字組成,其中前四位的數(shù)字是不變的,后四位數(shù)字都是09之間的一個(gè)數(shù)字,那么這個(gè)電話局不同的電話號(hào)碼最多有多少個(gè)?例. 把四封信任意投入三個(gè)信箱中,不同的投法種數(shù)是多少?已知集合A=a,b,c,集合B=c,d,e,f,問:(1)可以建立從集合A到B的不同映射的個(gè)數(shù);(2)可以建立從集合B到A的不同映射的個(gè)數(shù).3名同學(xué)分別報(bào)名參加校數(shù)學(xué)、物理、化學(xué)、生物競(jìng)賽輔導(dǎo)
12、,每人限報(bào)其中一門,則不同的報(bào)法有多少種?小結(jié):解決“允許重復(fù)排列問題”要注意區(qū)分兩類元素:一類元素可以重復(fù).另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,再利用乘法原理直接求解的方法稱為“住店法”.(1)4名運(yùn)動(dòng)員爭(zhēng)奪三項(xiàng)冠軍(無并列)不同的結(jié)果有多少種? (2)4名運(yùn)動(dòng)員參加三項(xiàng)比賽,每人限報(bào)一項(xiàng),不同的報(bào)名方式有多少種? (3) 1200的自然數(shù)中,有多少個(gè)各位數(shù)上都不含數(shù)字5的個(gè)數(shù)? 1.1分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(選修23)(第三課時(shí))用0,1,2,9可以組成多少個(gè)8位號(hào)碼; 用0,1,2,9可以組成多少個(gè)有重復(fù)數(shù)字的4位整數(shù); 用0,1,2,9可以組成多少個(gè)無重復(fù)數(shù)字的4位整數(shù);用0,1,2,9可以組成多少個(gè)8位整數(shù);用0,1,2,9可以組成多少個(gè)有兩個(gè)重復(fù)數(shù)字的4位整數(shù)等等用0,1,2,9可以組成多少個(gè)無重復(fù)數(shù)字的4位奇數(shù);用0,1,2,9可以組成多少個(gè)無重復(fù)數(shù)字的比54281小的五位數(shù)問n元集合A=a1,a2,an共有多少個(gè)不同的子集?求滿足條
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子房屋買賣合同格式范本編寫示例
- 投標(biāo)安全承諾函
- 八年級(jí)生物下冊(cè) 7.1.1 植物的生殖教案 (新版)新人教版
- 河北省安平縣八年級(jí)地理上冊(cè) 1.1 遼闊的疆域教學(xué)設(shè)計(jì) 新人教版
- 八年級(jí)物理上冊(cè) 第二章 聲現(xiàn)象 第2節(jié) 聲音的特性第2課時(shí)聲音的特性綜合應(yīng)用教案 (新版)新人教版
- 2023六年級(jí)英語(yǔ)上冊(cè) Review Module Unit 2教案 外研版(三起)
- 2024-2025學(xué)年新教材高中化學(xué) 第1章 原子結(jié)構(gòu) 元素周期表 第2節(jié) 元素周期律和元素周期表 微專題二 元素“位-構(gòu)-性”之間的關(guān)系教案 魯科版必修第二冊(cè)
- 2024-2025年高中語(yǔ)文 第3單元 單元導(dǎo)讀教案 粵教版必修1
- 2024-2025學(xué)年高中歷史 第四單元 工業(yè)文明沖擊下的改革 第15課 戊戌變法(2)教學(xué)教案 岳麓版選修1
- 雨污管道勞務(wù)包工細(xì)分合同(2篇)
- 2024貴州省榕江縣事業(yè)單位招聘100人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 綿陽(yáng)市高中2022級(jí)(2025屆)高三第一次診斷性考試(一診)物理試卷
- 標(biāo)志設(shè)計(jì) 課件 2024-2025學(xué)年人教版(2024)初中美術(shù)七年級(jí)上冊(cè)
- 校園班級(jí)大隊(duì)委競(jìng)選內(nèi)容課件演示
- 2024版合同范本之711便利店加盟合同
- 醫(yī)療機(jī)構(gòu)工作人員廉潔從業(yè)九項(xiàng)準(zhǔn)則
- 1《觀潮》(課件)語(yǔ)文四年級(jí)上冊(cè)統(tǒng)編版
- 部編版小學(xué)二年級(jí)道德與法治上冊(cè) 第四單元 我們生活的地方 學(xué)歷案設(shè)計(jì)
- 人教版九年級(jí)化學(xué)電子版教材(全冊(cè))-課件資料
- 生物人教版(2024)版七年級(jí)上冊(cè)1.2.1學(xué)習(xí)使用顯微鏡教學(xué)課件03
- 第三單元分?jǐn)?shù)除法(單元測(cè)試)-2024-2025學(xué)年六年級(jí)上冊(cè)數(shù)學(xué)人教版
評(píng)論
0/150
提交評(píng)論