數(shù)字圖像處理知識(shí)點(diǎn)總結(jié)_第1頁
數(shù)字圖像處理知識(shí)點(diǎn)總結(jié)_第2頁
數(shù)字圖像處理知識(shí)點(diǎn)總結(jié)_第3頁
數(shù)字圖像處理知識(shí)點(diǎn)總結(jié)_第4頁
數(shù)字圖像處理知識(shí)點(diǎn)總結(jié)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、基礎(chǔ)1.什么是數(shù)字圖像一副圖像可定義為一個(gè)二維函數(shù)f(X、y),其中x和y是空間(平面)坐標(biāo),而在任何一對(duì)空間坐標(biāo)(x、y)處的幅值f稱為圖像在該點(diǎn)處的強(qiáng)度或灰度。當(dāng)x、y和灰度值f是有限的離散數(shù)值時(shí),我們稱該圖像為數(shù)字圖像。Thefunctionfmayrepresentintensity(formonochiomeimages)orcolor(forcolorimages)orotlierassociatedvalues.Digitalimage:animagetliathasbeendigitizedbotliinspatialcoordinatesandassociatedvalueC

2、onsistof2sets:(1)apointsetand(2)avaluesetCanberepresentedintlieformI=(x,a(x):x屬于X,a(x)屬于FWliydoweneedimagecompression?-Exampledigitalcamera(4Mpixel)Rawdata一24bits,4Mpixels一12Mbytes192Mmemoiycard_16pictures2-圖像坐標(biāo)系笛卡爾坐標(biāo)不能作為像素坐標(biāo)最小單位空間分辨率是圖像中可辨別的最小細(xì)節(jié)的度量?;叶确直媛适侵冈诨叶燃?jí)中可分辨的最小變化。數(shù)字圖像處理的概念、研究?jī)?nèi)容數(shù)字圖像處理是指借助于數(shù)字計(jì)算

3、機(jī)來處理數(shù)字圖像。數(shù)字圖像是由有限數(shù)量的元素組成的,每個(gè)元素都有一個(gè)特定的位置和幅值。這些元素成為圖畫元素、圖像元素或像素。Functions:1.Acquisition2.Storage3Processing4Communication5.DisplayimageSamplingandQuantization采樣和量化Imagesampling:digitizeanimageinthespatialdomainSpatial/imageresolution分辨率pixelsizeornumberofpixels圖像的領(lǐng)域(4,&對(duì)角)及連通的概念Neighborhoodrelationisu

4、sedtotelladjacent(鄰近,冊(cè)匕連)pixelsItisusedinestablishingboundariesofobjectsandcomponentsofregionsinanimageforanalyzingregions.位于坐標(biāo)(X、y)處的像素p有4個(gè)水平和垂直的相鄰像素,其坐標(biāo)由下式給出:(x+1,y),(x-Ey)t(x,y+1),(x,y+1)這組像素成為p的4鄰域,用M(P)表示。每個(gè)像素距(x,y)一個(gè)單位距離。Note:qWN4(p)impliespEN4(q)4-neighborhoodrelationconsidersonlyveitical(垂直)

5、andhorizontal(水平)neighbors.P的4個(gè)對(duì)角相鄰像素的坐標(biāo)如下:(x-l,y-l),(x,y-1),(x-l,y),(x+ly),(x,y+1),(x+1,y+1),(x+1,y-1),(x-by+1),(x-1,y-1)并用比(p)表示。這些點(diǎn)與4個(gè)鄰點(diǎn)一起稱為p的8鄰域,用(P)表示neighborhoodrelationconsidersallneighborpixels.Diagonal-neighborhoodrelationconsidersonlydiagonal(斜的)neighborpixels.(x-1,y-1),(x+1,y-1),(x-1,y+1)

6、,(x+1,y+1)6各不同電磁波譜的圖像成像技術(shù),波段劃分?7圖像數(shù)字化過程(打描、采樣、量化)及各自含義?圖像分辨率(空間、灰度)與質(zhì)量的關(guān)系?(采樣間距與數(shù)據(jù)量的關(guān)系、采樣間距與質(zhì)量的關(guān)系、量化與數(shù)據(jù)量的關(guān)系、量化與質(zhì)量的關(guān)系)Imagequantization(數(shù)字It)digitizecontinuouspixelvaluesintodiscietenumbers空域增強(qiáng)8圖像增強(qiáng)的目的(不清晰的圖像變得清晰或強(qiáng)調(diào)某些感興趣的特征,改善圖像質(zhì)量,豐富信息量,加強(qiáng)圖像判讀和識(shí)別效果),分類及特點(diǎn)Objective:toprocessannnagesothattheresultismor

7、esuitableforaspecificapplication.PioblemonentedThebestmetliodforenliancingX-rayimagesmaybenotthebestmetliod,evennotsuitableforenliancingpicturesofMars(火星)transmittedbyaspaceprobe(探測(cè)器)Theiearetwomaincategoriesoftechniquesforimageenliancement:Spatial(空間的)DomainMetliods-whichoperatedirectlyonpixels.Fre

8、quencyDomainMethods-v/hichoperateontlieFourierTransfoimoftheimage.Combinationalapproacheswithtliesetwocategoriesarenotunusual.9圖像增強(qiáng)點(diǎn)到點(diǎn)運(yùn)算有哪些?特點(diǎn)??jī)?yōu)缺點(diǎn)?(對(duì)數(shù)、乘方率、分段線性、二值化、加法噪聲、減法變化)Enhancementatanypointinanimagedependsonlyontliegraylevelatthatpoint.Contraststretching乂寸比度擴(kuò)展:darkeningthegraylevelsbelownmithe

9、originalimage,bnghtenuigthegraylevelsabovemintlieonginalimageThresholdingI測(cè)值ft:thelimitnigcaseistogenerateabinaryimageSomeBasicGrayLevelTransfonnationsNegative(linear)Log(logandinveise-logtiansfbnnations)Powerlaw乘方律(nthpowerandn-tliioottiansfonnations.Theidentitytiansfonnationisatiivial(微不足道的)case:o

10、utput=input,onlyforcompleteness完備性)Piecewise-lineartiansfonnationfunctions(分段線性函數(shù))Bitslicing位切片DefnntionThenegativeofanimagewithgraylevelsintlierange0,L-lcanbedefinedas:s=L-l-ri-L-1,s=0:Wlnte-Black1-0,s=L-l:Black-WhiteFunction:Reversingtheintensitylevelsofanimageintinsmannerproducestlieequivalent(等彳

11、介物)ofaphotogiaphicnegative(照相底片)Applications:Enliancingwhiteorgraydetailsembeddedindarkregions,especiallywhentheblackareasaredominantinsize“Log”Definition:Thegeneralfonnoftlielogtransformationisdefinedass=clog(l+r)L-l=clog(l+L-l)c=L1logLWlierecisaconstant,assumetliatr0uLognFunction:Tomapanairowrange

12、oflowgray-levelvaluesintlieinputimageintoavzideirangeofoutputlevels.Tomapavziderangeofhighgray-levelvaluesintheinputimageintoanairowerrangeofoutputlevels.uLognApplications:Toexpandtlievaluesofdarkpixelsinannnagevzhilecompressingthehigher-levelvaluesTocompressdynamicrangeIngeneral,loga門thmicmappingis

13、usefulifwewishtoenhancedetailinthedarkerregionsoftheimage,attheexpenseofdetailintlieblighterregionsuInverseLognDefinition:Thegeneralformoftlieinverselogtiansfonnationisdefinedass=101L1=gc(L-i)1c=L1WlierecisaconstantInverseLogFunction:TomapavziderangeoflowgrayJevelvaluesintheinputimageintoanairowerra

14、ngeofoutputlevels.Tomapanairowrangeofhighgiay-levelvaluesintlieinputimageintoawiderrangeofoutputlevels.InverseLogApplications:Toexpandthevaluesofbnglitpixelsinanimagewhilecompressingthelowei-levelvalueLogTransfomiationsconckisionNote:Anycuivehavingthegeneralshapeofthelogfunctionscanaccomplishtliesim

15、ilarfunctionofSpreading/Compressingofgraylevels.Comparedwithlogtransformation,Power-Lavztiansfonnations(discussedlater)aremoreversatile(通用的,多而于的)withdifferentparametersHowevei,logfiinctioncancompressthedynamicrangeofimageswithlargevariationsinpixelvalues.Power-LawTransformationsDefnntionsTheBasicfor

16、mofPower-LawTransfomiations:S=CryWlierecandyarepositiveconstantsFunctions:Thecaseofyl:similartothecaseofinveiselogfunctionPiecewise-LinearTransfonnationFunction分段線性Advantage:ThefonnofpiecevziseflinctioncanbearbitranlycomplexDisadvantage:TheirspecificationrequiresmoreuserinputApplicationsContrastStre

17、tching(對(duì)比度拉伸)Incieasethedynamicrangeoftliegraylevelsinanlow-confaastnnage.Gray-LevelSlicing(灰度切割/灰度窗II變換):Highlight吏顯著)aspecificrangeofgraylevelsinanimageBit-PlaneSlicing(位平面切割)HighliglittliecontnbutionmadetototalimageappearancebyspecificbitsGraylevelmapping-ConclusionsTheprocessoftakingtheonginalda

18、tanumbersandchangingtliemtonewvaluesiscalledmappuig.Amathematicaldescnptionoftliemappingiscalledamappingfunction.ApplicationBnghtness/contiastenliancementDisplaycalibration(顯示標(biāo)定)/photometiiccalibration(光度學(xué)標(biāo)定)Contourlinedetenmnation(輪廓線確定)Pointprocesses-operationsatapixeldependonlyonthatpixelThesimpl

19、estcaseisthresholdingwheretlieintensityprofileisreplacedbyastepfunction階躍函數(shù),activeatachosenthresholdvalue.Intinscaseanypixelwithagreylevelbelov/thethresholdintheinputimagegetsmappedto0intheoutputimage.Otlierpixelsaremappedto255加法、減法:Definitionsofaritlimetic/logicoperationsOperationsareperfonnedonapi

20、xel-by-pixelbasisbetweentv/oormoreimages.r(x,y)=gIl(x,y),I2(x,y)Basedonthesoftwareorhardwarebeingused,tlieycanbedoneSequentiallyorinParallelImageSubtractionInputimages:f(x9y)ndh(x9y),subtractionofthem:g(x,刃=f(x9y)h(x,y)Purpose:enliancetliedifferencesbetweenimagesOriginalfractalimageResultofsettingst

21、hefourlower-orderbitplanestozero.Differencebetween(a)and(b).HistogramequalizeddifferenceimageEvaluatingtlieeffectofsettingto0thelower-orderplanesImageCombiningThisissimilartoadditionbutproportionsofthecoirespondingpixelsofthetwounagesareaddedtogether.Wemaywishtogivemoreemphasistooneimagethantheother

22、.Thiscanbedonebyalphablending1混合g(x,y)=afl(x,y)+(1-a)C(x,y)WliencanthisEquationis05,g(x,y)becomesasimple,evenly-vzeightedaverageoftlietwoinputimages.Itispossibleforaatovaiy,eveiypixelofanunagecanhaveitsowna,storedinaseparatealphachannel.如何設(shè)計(jì)映射函數(shù)?(計(jì)算大題)直方圖的定義、圖像與灰度直方圖間的對(duì)應(yīng)關(guān)系?不同圖像直方圖的特點(diǎn)(高調(diào)、中調(diào)、低調(diào))?Image

23、Histogivam(直方圖):BrilitnesshistogramprovidesthefrequencyofthebrightnessvalueintheimageGraylevelmappingandhistogram:D0=axDr+bb0,histogrammovestothenglittomakeimagebrightei*bl,histogramcontiastincreasesal,histogramcontiastdecreases例:Do=1.2xDf+50ExamplesofHistogramsDarkimage-concentiatedonthelowsideoftl

24、iegrayscale.Brightimage-biasedtowardthehighsideoftliegrayscaleLowcontrastimage-narrowandcenteredtowardthemiddleofthegrayscaleHigli-contiastimagecoverabroadrange,thedistnbutionisnottoofarfromunifbim11坐標(biāo)軸參數(shù)的含義?直方圖運(yùn)算(算數(shù)、奇與偶的關(guān)系),圖像運(yùn)算與直方圖的關(guān)系?直方圖均衡的基本思想是什么?ContinuousCase:Considerforthecaseofcontinuousimag

25、esandcontinuoustransformationfunctions.LetthetransformationflinctionbeS=T(r),0r1Wlierer=0representsblackandr=lrepresentsvzhite.AssumetliatthefaansfonnationfunctionT(r)satisfiesthefollowingtwoConditions:A9T(r)issingle-valued單值的andmonotonicallyincreasing單調(diào)遞inOrguaranteetheinveisetiansfonnationwillexis

26、t.T(r)ismonotonicallyincreasnigtopreseivetheincreasingorderfiomblacktowhiteintlieoutputimage.B.T(r)lforOrguaianteestheoutputlevelisinthesamerangeastheinputlevelsDiscreteVersion:Justuseprobabilities概率andsummations總和insteadofprobabilitydensityfunctionsandintegrals.Theprobabilityofoccuirenceofgraylevel

27、inanimageisapproxunatedbyPg=0,1,2,,厶-1ThetransformationfunctionisSk=k=0丄2,.L2inTomapeachpixelwitlilevelintheinputimageintoacoirespondingpixelwithlevelS*intheoutputimageThetransformationgiveninaboveequationiscalledhistogramequalizationorhistogiamlinearization空域?yàn)V波、平滑、銳化典型方法、種類、應(yīng)用特點(diǎn)(平滑均值、平滑中值:銳化拉普拉斯算子,

28、銳化微分算子)Filtersletthroughorattenuate肖ij弱specificrangesofimagedetailseg.slow/gradualorfastchangesinpixelvalueHencetlieclassificationoffiltersintolow-passfiltersAttenuates(變?nèi)?fastchangesnipixelvaluebutletsthroulislow/gradualchangesTypicalapplication:noiseremovalTendstoblurunagehigh-passfiltersAttenuate

29、sslow/giadualchangesinpixelvaluebutletsthrouifastchangesTypicalapplication:edgeenhancementTendstobesensitivetonoiseOutputvaluesmaybeoutsidenumericalrangeofpixelvalueScalingmayberequuedAndotheitypesoffiltersband-passfilteis,band-rejectfilteis,SmootliingSpatialFiltersMotivationbluiring(模糊)andnoiseredu

30、ctionBlurringisusedinpreprocessingstepsRemovalofsmalldetailsfromanimagepriortoobjectextractionBridgingofsmallgaps(MJ隙)inlinesorcuivesReductionoffalsecontours(ducedbyzooming)NoiseReductionCanbeaccomplishedbyblurringwithalinearfilterandalsobynonlinearfiltenng.SmootliingLinearFiltersAveragingfilt

31、er,lowpassfilterIdea:Toreplacethevalueofeveiypixelinanimagebytlieaverageoftliegraylevelsintlieneighboihooddefinedbythefilteimask,whichresultsinanimagewithreduced“sharptransitionsingraylevelsApplicationsNoisereductionHowever,becauseofshaiptiansitionsreduction,edgescanalsobebluired.(Undesirable)Thesmo

32、othingoffalsecontoursThefalsecontoursresultfiomusinganinsufficientnumberofgraylevelsThereductionofciirelevant1detailinanimagecIrrelevantdetailnmeanspixelregionstliataresmallwithrespecttothesizeoffilteimask.SharpeningSpatialFiltersObjectiveofSharpeningTohighlightfinedetailToenliancedetailthathasbeenb

33、luiTed(模糊)EitherinerrorOrasanaturaleffectofaparticularimageacquisition(采集)methodApplicationsElectronprinting(電子E卩刷)andmedicalimagingIndustrialinspection匸業(yè)檢測(cè)andautonomousguidance自制導(dǎo)inmilitaiysystemsLaplacianhfasksIsotiopic各向同性的filtersRotationmvanantCoefficientsThecenteicoefficientoftlieLaplacianmaski

34、snegative,theothersarepositive,orviceversa.Thesumofcoefficientsis0Themaskcontainingthediagonalteimsusuallyarealittleshaiper.TheLaplaciancanhighlightsgrayleveldiscontinuitiesanddeemphasizeregionwithslowlyvaiyinggraylevelsItproducesgrayishedgelinesandotlierdiscontinuities.Howevei;tliesefeaturesaresupe

35、rimposedonadark,featurelessbackground.Howcanwerecovertheonginalbackgioundwhilepreseivingthesharpeningeffect?Theanswerissunpie,justaddbacktheonginalimageasfollowsSharpeningspatialfilterSmoothingspatialfilterLinearfilter(meanfilter)NoisereductionblurringBlur(smooth)ApplicationsSmoothingNoiseReductiona

36、ndObjectDetectionExample2ndDerivative(Laplacian)EnhancedetailDeblur(sharpen)Non-linear(Medianfilter)1stDerivative(gradient)尺寸與濾波效果的關(guān)系?濾波器系數(shù)的特點(diǎn)?濾波器形狀?濾波器的結(jié)構(gòu),濾波算法的實(shí)現(xiàn)SmootliingLinearFiltersThelargeitliesize,themorebluiredtheunageandtlielesstliedetailsCoefficients(系數(shù))Largertlian0Averaging/vzeiglited(red

37、ucingeffectofborder)Nonnalization:Smootliingmasksarenomiallyadjustedtopreseiveaveragevalue(Ewi=1)頻域增強(qiáng)16傅里葉變換公式、定義、性質(zhì),有哪些特點(diǎn)?譜與空域特征的關(guān)系?17.頻域?yàn)V波(理想、巴特沃斯、高斯)(低通、高通)特點(diǎn)?振鈴效應(yīng)?各個(gè)濾波器之間的比較,適用情況ButterworthfiltersOrder=2Thereislessnngingeffectcomparedtotlioseofideallowpassfilters!Ringingeffect振鈴效應(yīng)Ringingiscaused

38、asthelow-passfilteiingintioducesthesin(r)/nnthekernel.復(fù)原18圖像質(zhì)量退化的原因?模型?SimplifiedassumptionsNoiseisindependentofsignalNoisetypesIndependentofspatiallocationImpulsenoiseAdditivewhiteGaussiannoiseSpatiallydependentPeiiodicnoise處理技術(shù)?(中值一孤立點(diǎn)、椒鹽;帶阻、陷波一去除圖像中某一頻率分量、周期噪聲)PeriodicNoiseSource:electncalorelect

39、romechanicalinterferenceduringimageacquisitionCharacteristicsSpatiallydependentPeiiodic-easytoobseiveinfrequencydomainProcessingmetliodSuppressingnoisecomponentinfrequencydomainPeriodicnoisecanbereducedbysettingfrequencycoinponentscoirespendingtonoisetozero.BandRejectFilters頻帶抑制(帶阻)濾波器Usetoeluninate

40、fiequencycomponentsinsomebandsPenodicNotchRejectFilters陷波濾波器Anotchrejectfilterisusedtoeliminatesomefrequencycomponents.增強(qiáng)與復(fù)原的關(guān)系?彩色幾個(gè)彩色系統(tǒng)(RGB、CMY、CMYK、HSI)各自特點(diǎn)?各分量含義?RGBmodel:Red,Green,BlueColormonitors,colorvideocamerasBasicknowledgeofRGBBasedonCartesiancoordinatesystemColorsaredefinedbyvectorsexten

41、dingf?omtlieongininR,GandBcomponentsAllvaluesofR,GandBarenoimalizedintherange0,1ImagesrepresentedintheRGBmodelConsistsof3coinponents,R,GandBIftliepixeldepthofeachcomponentis8bits,thereare24bitsinRGBcolorpixelFull-colorunageisoftenusedtodenotea24-bitRGBcolorimageAndtotalnumberofcolorsoftheimageis(28)3=16,777,216Indigitalimages,weoftenusetheintegerrange0,1,2,.,255,ratlierthantlienonnalizedrealrange0,1foreachcolorcoinponent.CMYandCMYKmodels:CMY:Cyan青,Magenta品紅,Yellow,CMYK:Cyan,Magenta,Yellow,BlackColorprin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論