版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、3.1.4空間向量的正交分解及其坐標(biāo)表示一、選擇題1以下四個命題中正確的是()A空間的任何一個向量都可以用三個給定的向量表示B若a,b,c是空間的一個基底,則a,b,c全不是零向量C若向量ab,則a,b與任何一個向量都不能構(gòu)成空間的一個基底D任何三個不共線的向量都可以構(gòu)成空間的一個基底答案:B2已知點(diǎn)A在基底a,b,c下的坐標(biāo)為(8,6,4),基底aij,bjk,cki,則點(diǎn)A在基底i,j,k下的坐標(biāo)是()A(1,1,0) B(10,12,14)C(1,0,1) D(12,14,10)解析:eq o(OA,sup6()8a6b4c8(ij)6(jk)4(ki)12i14j10k,點(diǎn)A在基底i,
2、j,k下的坐標(biāo)為(12,14,10)答案:D3若e1,e2,e3是空間向量的一個基底,又ae1e2e3,be1e2e3,ce1e2e3,de12e23e3,dxaybzc,則x,y,z的值分別為()Aeq f(5,2),1,eq f(1,2) Beq f(5,2),1,eq f(1,2)Ceq f(5,2),1,eq f(1,2) Deq f(5,2),1,eq f(1,2)解析:由題意,得xaybzcx(e1e2e3)y(e1e2e3)z(e1e2e3)(xyz)e1(xyz)e2(xyz)e3e12e23e3,由空間向量基本定理,得eq blcrc (avs4alco1(xyz1,,xyz
3、2,,xyz3,)解得eq blcrc (avs4alco1(xf(5,2),,y1,,zf(1,2).)答案:A4(2019陵川高二月考)點(diǎn)P是矩形ABCD所在平面外一點(diǎn),且PA平面ABCD,M,N分別是PC,PD上的點(diǎn),且eq o(PM,sup6()eq f(2,3)eq o(PC,sup6(),eq o(PN,sup6()eq o(ND,sup6(),則滿足eq o(MN,sup6()xeq o(AB,sup6()yeq o(AD,sup6()zeq o(AP,sup6()的實(shí)數(shù)x,y,z的值分別為()Aeq f(2,3),eq f(1,6),eq f(1,6) Beq f(2,3),e
4、q f(1,6),eq f(1,6)Ceq f(2,3),eq f(1,6),eq f(1,6) Deq f(2,3),eq f(1,6),eq f(1,6)解析:如圖所示,取PC的中點(diǎn)E,連接NE,則eq o(MN,sup6()eq o(EN,sup6()eq o(EM,sup6()eq f(1,2)eq o(CD,sup6()(eq o(PM,sup6()eq o(PE,sup6()eq f(1,2)eq o(CD,sup6()eq f(2,3)eq o(PC,sup6()eq f(1,2)eq o(PC,sup6()eq f(1,2)eq o(CD,sup6()eq f(1,6)eq o
5、(PC,sup6()eq f(1,2)eq o(AB,sup6()eq f(1,6)(eq o(AP,sup6()eq o(AB,sup6()eq o(AD,sup6()eq f(2,3)eq o(AB,sup6()eq f(1,6)eq o(AD,sup6()eq f(1,6)eq o(AP,sup6(),比較知,xeq f(2,3),yeq f(1,6),zeq f(1,6).答案:D5已知三棱錐PABC中,PA平面ABC,ABAC,且PAABAC1.如圖建立空間直角坐標(biāo)系A(chǔ)xyz.設(shè)G為PBC的重心,則eq o(BG,sup6()的坐標(biāo)為()Aeq blc(rc)(avs4alco1(f
6、(1,3),f(1,3),f(1,3) Beq blc(rc)(avs4alco1(f(1,3),f(1,3),f(2,3)Ceq blc(rc)(avs4alco1(f(2,3),f(1,3),f(1,3) Deq blc(rc)(avs4alco1(f(2,3),f(1,3),f(1,3)解析:由題意,可知B(1,0,0),C(0,1,0),P(0,0,1)取BC的中點(diǎn)為M,則Meq f(1,2),eq f(1,2),0.G為PBC的重心,設(shè)G的坐標(biāo)為(x,y,z),由eq o(PG,sup6()eq f(2,3)eq o(PM,sup6(),得(x,y,z1)eq f(2,3)eq bl
7、c(rc)(avs4alco1(f(1,2),f(1,2),1),從而得Geq f(1,3),eq f(1,3),eq f(1,3),eq o(BG,sup6()eq blc(rc)(avs4alco1(f(2,3),f(1,3),f(1,3).答案:D二、填空題6如圖所示,直三棱柱ABCA1B1C1中,ABAC,D,E分別為AA1,B1C的中點(diǎn),若記eq o(AB,sup6()a,eq o(AC,sup6()b,eq o(AA1,sup6()c,則eq o(DE,sup6()_.(用a,b,c表示)解析:eq o(DE,sup6()eq o(DA,sup6()eq o(AC,sup6()eq
8、 o(CE,sup6()eq f(1,2)eq o(AA1,sup6()eq o(AC,sup6()eq f(1,2)eq o(CB1,sup6()eq f(1,2)eq o(AA1,sup6()eq o(AC,sup6()eq f(1,2)(eq o(CB,sup6()eq o(BB1,sup6()eq o(AC,sup6()eq f(1,2)(eq o(CA,sup6()eq o(AB,sup6()eq f(1,2)eq o(AC,sup6()eq f(1,2)eq o(AB,sup6()eq f(1,2)aeq f(1,2)b.答案:eq f(1,2)aeq f(1,2)b7已知空間一個
9、基底a,b,c,mabc,nx ay bc,若m與n共線,則x_,y_.解析:m與n共線,存在實(shí)數(shù),使mn,即abcxaybc,于是eq blcrc (avs4alco1(x1,,y1,,1.)解得eq blcrc (avs4alco1(x1,,y1,,1.)答案:118正方體ABCDA1B1C1D1中,點(diǎn)E,F(xiàn)分別是底面A1C1和側(cè)面CD1的中心若eq o(EF,sup6()eq o(A1D,sup6()0(R),則_.解析:如圖,連接A1C1,C1D,則E為A1C1的中點(diǎn),F(xiàn)為C1D的中點(diǎn)在A1DC1中,EFA1D,且EFeq f(1,2)A1D.eq o(EF,sup6()eq f(1,
10、2)eq o(A1D,sup6()0,eq f(1,2).答案:eq f(1,2)三、解答題9. (2019孝感市七校聯(lián)盟期末)如圖,在正四棱錐PABCD中,底面ABCD是邊長為1的正方形,O是AC與BD的交點(diǎn),PO1,M是PC的中點(diǎn)設(shè)eq o(AB,sup6()a,eq o(AD,sup6()b,eq o(AP,sup6()c.(1)用向量a,b,c表示eq o(BM,sup6();(2)在如圖的空間直角坐標(biāo)系中,求eq o(BM,sup6() 的坐標(biāo)解:(1)eq o(BM,sup6()eq o(BC,sup6()eq o(CM,sup6(),eq o(BC,sup6()eq o(AD,s
11、up6(),eq o(CM,sup6()eq f(1,2)eq o(CP,sup6(),eq o(CP,sup6()eq o(AP,sup6()eq o(AC,sup6(),eq o(AC,sup6()eq o(AB,sup6()eq o(AD,sup6(),eq o(BM,sup6()eq o(AD,sup6()eq f(1,2)(eq o(AP,sup6()eq o(AC,sup6()eq o(AD,sup6()eq f(1,2)eq o(AP,sup6()eq f(1,2)(eq o(AB,sup6()eq o(AD,sup6()eq f(1,2)eq o(AB,sup6()eq f(1
12、,2)eq o(AD,sup6()eq f(1,2)eq o(AP,sup6()eq f(1,2)aeq f(1,2)beq f(1,2)c.(2)A(0,0,0),Oeq blc(rc)(avs4alco1(f(1,2),f(1,2),0),Peq blc(rc)(avs4alco1(f(1,2),f(1,2),1),B(1,0,0),D(0,1,0),aeq o(AB,sup6()(1,0,0),beq o(AD,sup6()(0,1,0)ceq o(AP,sup6()eq o(OP,sup6()eq o(OA,sup6()eq blc(rc)(avs4alco1(f(1,2),f(1,2
13、),1),eq o(BM,sup6()eq f(1,2)aeq f(1,2)beq f(1,2)ceq f(1,2)(1,0,0)eq f(1,2)(0,1,0)eq f(1,2)eq f(1,2),eq f(1,2),1eq f(1,4),eq f(3,4),eq f(1,2).10已知正方體ABCDA1B1C1D1的棱長為1,點(diǎn)E,F(xiàn)分別在線段A1D,AC上,且EFA1D,EFAC,以點(diǎn)D為坐標(biāo)原點(diǎn),DA,DC,DD1分別作為x軸,y軸,z軸,建立空間直角坐標(biāo)系Dxyz,如圖(1)求向量eq o(EF,sup6()的坐標(biāo);(2)求證:EFBD1.解:(1)正方體ABCDA1B1C1D1的棱
14、長為1,設(shè)eq o(DA,sup6()e1,eq o(DC,sup6()e2,eq o(DD1,sup6()e3,則e1,e2,e3為單位正交基底eq o(ED,sup6()與eq o(DA1,sup6()共線,eq o(CF,sup6()與eq o(CA,sup6()共線,設(shè)eq o(ED,sup6()eq o(DA1,sup6(),eq o(CF,sup6()eq o(CA,sup6(),則eq o(EF,sup6()eq o(ED,sup6()eq o(DC,sup6()eq o(CF,sup6()eq o(DA1,sup6()eq o(DC,sup6()eq o(CA,sup6()(e
15、q o(DA,sup6()eq o(AA1,sup6()eq o(DC,sup6()(eq o(DA,sup6()eq o(DC,sup6()()eq o(DA,sup6()(1)eq o(DC,sup6()eq o(DD1,sup6()()e1(1)e2e3.EFA1D,EFAC,即eq o(EF,sup6()eq o(A1D,sup6(),eq o(EF,sup6()eq o(AC,sup6(),eq o(EF,sup6()eq o(A1D,sup6()0,eq o(EF,sup6()eq o(AC,sup6()0.又eq o(A1D,sup6()eq o(AD,sup6()eq o(AA1,sup6()e1e3,eq o(AC,sup6()eq o(DC,sup6()eq o(DA,sup6()e2e1.()e1(1)e2e3(e1e3)0.()e1(1)e2e3(e2e1)0.整理得eq blcrc (avs4alco1(0,,10,)即eq blcrc (avs4alco1(20,,21.)解得eq f(1,3),eq f(2,3).eq o(EF,sup6()eq f(1,3)e1eq f(1,3)e2eq f(1,3)e3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國屏幕面板行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國壓力自動校驗(yàn)系統(tǒng)數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國光纖按續(xù)盒行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國中檔橋梁板行業(yè)投資前景及策略咨詢研究報告
- 2024年中國高速鋼圓材市場調(diào)查研究報告
- 2024年中國聚氯乙烯汽車地板市場調(diào)查研究報告
- 安第斯之旅:攝影與探索-揭示南美自然美與土著文化
- 2024年中國大電流校驗(yàn)線市場調(diào)查研究報告
- 2024年中國全羊毛膠背地毯市場調(diào)查研究報告
- 昆明市物流園區(qū)發(fā)展規(guī)劃問題研究
- 裝修工程提出的合理化建議
- 模擬真實(shí)天平(flash模擬型課件)
- 藥品采購供應(yīng)制度檢查表
- 發(fā)電機(jī)組達(dá)標(biāo)投產(chǎn)自查報告
- 2021年貴州高考理綜試題含答案
- 如何做好一名責(zé)任護(hù)士ppt課件
- 通信線路畢業(yè)設(shè)計(論文):通信光纜線路維護(hù)
- 5索夫矩陣模型在觀眾拓展規(guī)劃中的運(yùn)用
- 管道縮寫代號.xlsx
- 2021年科室人材培養(yǎng)和人材梯隊建設(shè)計劃.doc
- 化工原理重要公式(總結(jié)精選)
評論
0/150
提交評論