2021-2022學(xué)年黑龍江省佳木斯市建三江高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年黑龍江省佳木斯市建三江高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年黑龍江省佳木斯市建三江高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年黑龍江省佳木斯市建三江高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年黑龍江省佳木斯市建三江高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1如圖是正方體截去一個(gè)四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是( )ABCD2已知復(fù)數(shù)是純虛數(shù),其中是實(shí)數(shù),則等于( )ABCD3 “十二平均律” 是通用的音律體系,明代朱載堉

2、最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為ABCD4復(fù)數(shù)為純虛數(shù),則( )AiB2iC2iDi5設(shè)集合(為實(shí)數(shù)集),則( )ABCD6已知為虛數(shù)單位,實(shí)數(shù)滿足,則 ( )A1BCD7已知函數(shù),方程有四個(gè)不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個(gè)零點(diǎn)”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件8定義在R上的函數(shù),若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成

3、立的是( )ABCD9已知集合,則元素個(gè)數(shù)為( )A1B2C3D410已知集合,若,則( )ABCD11已知函數(shù)且,則實(shí)數(shù)的取值范圍是( )ABCD12已知函數(shù)()的部分圖象如圖所示,且,則的最小值為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13設(shè)函數(shù),當(dāng)時(shí),記最大值為,則的最小值為_.14已知各棱長都相等的直三棱柱(側(cè)棱與底面垂直的棱柱稱為直棱柱)所有頂點(diǎn)都在球的表面上.若球的表面積為則該三棱柱的側(cè)面積為_15 “直線l1:與直線l2:平行”是“a2”的_條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)16將2個(gè)相同的紅球和2個(gè)相同的黑球全部放

4、入甲、乙、丙、丁四個(gè)盒子里,其中甲、乙盒子均最多可放入2個(gè)球,丙、丁盒子均最多可放入1個(gè)球,且不同顏色的球不能放入同一個(gè)盒子里,共有_種不同的放法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知數(shù)列的前項(xiàng)和為,且滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,且數(shù)列前項(xiàng)和為,求的取值范圍18(12分)已知拋物線的焦點(diǎn)為,點(diǎn),點(diǎn)為拋物線上的動點(diǎn) (1)若的最小值為,求實(shí)數(shù)的值; (2)設(shè)線段的中點(diǎn)為,其中為坐標(biāo)原點(diǎn),若,求的面積19(12分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時(shí)間,采用分層抽樣的方法收集該校100名學(xué)

5、生每周平均體育鍛煉時(shí)間(單位:小時(shí)).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時(shí)間的頻率分布表:時(shí)間(小時(shí))0,1(1,2(2,3(3,4(4,5(5,6頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時(shí)間超過2小時(shí),請完成每周平均體育鍛煉時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān)”?男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過2小時(shí)每周平均體育鍛煉時(shí)間超過2小時(shí)總計(jì)附:K2.P(K2k0)0.1000.0500.0100.0052.7063.8416

6、.6357.87920(12分)已知在中,角,的對邊分別為,的面積為.(1)求證:;(2)若,求的值.21(12分)已知函數(shù),其中()當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;()設(shè),求證:;()若對于恒成立,求的最大值22(10分)在平面直角坐標(biāo)系中,點(diǎn)是直線上的動點(diǎn),為定點(diǎn),點(diǎn)為的中點(diǎn),動點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)過點(diǎn)的直線交曲線于,兩點(diǎn),為曲線上異于,的任意一點(diǎn),直線,分別交直線于,兩點(diǎn).問是否為定值?若是,求的值;若不是,請說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】根據(jù)三視圖作出幾何體

7、的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點(diǎn)睛】本題考查利用三視圖計(jì)算幾何體的體積,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.2A【解析】對復(fù)數(shù)進(jìn)行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實(shí)部為0,得到的值,從而得到復(fù)數(shù).【詳解】 因?yàn)闉榧兲摂?shù),所以,得所以.故選A項(xiàng)【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,純虛數(shù)的概念,屬于簡單題.3D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音

8、頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列. 等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(), 數(shù)列是等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.4B【解析】復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【詳解】為純虛數(shù),解得. .故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.5A【解析】根據(jù)集合交集與補(bǔ)集運(yùn)算,即可求得.【詳解】集合,所以所以故選:A【點(diǎn)睛】本題考查了集合交集與補(bǔ)集的混合運(yùn)算,屬于基礎(chǔ)題.6D【解析】 ,則 故選D.7A【解析】作出函數(shù)的圖象,得到,把函數(shù)有零點(diǎn)轉(zhuǎn)化為與在(

9、2,4上有交點(diǎn),利用導(dǎo)數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷【詳解】作出函數(shù)的圖象如圖,由圖可知,函數(shù)有2個(gè)零點(diǎn),即有兩個(gè)不同的根,也就是與在上有2個(gè)交點(diǎn),則的最小值為;設(shè)過原點(diǎn)的直線與的切點(diǎn)為,斜率為,則切線方程為,把代入,可得,即,切線斜率為,k的取值范圍是,函數(shù)有兩個(gè)零點(diǎn)”是“”的充分不必要條件,故選A【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)的判定,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,試題有一定的綜合性,屬于中檔題8D【解析】根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項(xiàng)逐個(gè)判斷即可【詳解】由條件可得函數(shù)關(guān)于直

10、線對稱;在,上單調(diào)遞增,且在時(shí)使得;又,所以選項(xiàng)成立;,比離對稱軸遠(yuǎn),可得,選項(xiàng)成立;,可知比離對稱軸遠(yuǎn),選項(xiàng)成立;,符號不定,無法比較大小,不一定成立故選:【點(diǎn)睛】本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.9B【解析】作出兩集合所表示的點(diǎn)的圖象,可得選項(xiàng).【詳解】由題意得,集合A表示以原點(diǎn)為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點(diǎn),作出兩集合所表示的點(diǎn)的示意圖如下圖所示,得出兩個(gè)圖象有兩個(gè)交點(diǎn):點(diǎn)A和點(diǎn)B,所以兩個(gè)集合有兩個(gè)公共元素,所以元素個(gè)數(shù)為2,故選:B.【點(diǎn)睛】本題考查集合的交集運(yùn)算,關(guān)鍵在于作出集合所表示的點(diǎn)的圖象,再運(yùn)用數(shù)形結(jié)合

11、的思想,屬于基礎(chǔ)題.10A【解析】由,得,代入集合B即可得.【詳解】,即:,故選:A【點(diǎn)睛】本題考查了集合交集的含義,也考查了元素與集合的關(guān)系,屬于基礎(chǔ)題.11B【解析】構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域?yàn)?,且,所以為奇函?shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.12A【解析】是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個(gè)零點(diǎn)可得【詳解】由題意,函數(shù)在軸右邊的第一個(gè)零點(diǎn)為,在軸左邊第一個(gè)零點(diǎn)是,的最小值是故選:A.【點(diǎn)睛】本題考查三角函數(shù)的周期性

12、,考查函數(shù)的對稱性函數(shù)的零點(diǎn)就是其圖象對稱中心的橫坐標(biāo)二、填空題:本題共4小題,每小題5分,共20分。13【解析】易知,設(shè),利用絕對值不等式的性質(zhì)即可得解【詳解】,設(shè),令,當(dāng)時(shí),所以單調(diào)遞減令,當(dāng)時(shí),所以單調(diào)遞增所以當(dāng)時(shí),則則,即故答案為:.【點(diǎn)睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題14【解析】只要算出直三棱柱的棱長即可,在中,利用即可得到關(guān)于x的方程,解方程即可解決.【詳解】由已知,解得,如圖所示,設(shè)底面等邊三角形中心為,直三棱柱的棱長為x,則,故,即,解得,故三棱柱的側(cè)面積為.故答案為:.【點(diǎn)睛】本題考查特殊柱體的外接球問題,考查學(xué)生的空間

13、想象能力,是一道中檔題.15必要不充分【解析】先求解直線l1與直線l2平行的等價(jià)條件,然后進(jìn)行判斷.【詳解】“直線l1:與直線l2:平行”等價(jià)于a2,故“直線l1:與直線l2:平行”是“a2”的必要不充分條件故答案為:必要不充分.【點(diǎn)睛】本題主要考查充分必要條件的判定,把已知條件進(jìn)行等價(jià)轉(zhuǎn)化是求解這類問題的關(guān)鍵,側(cè)重考查邏輯推理的核心素養(yǎng).16【解析】討論裝球盒子的個(gè)數(shù),計(jì)算得到答案.【詳解】當(dāng)四個(gè)盒子有球時(shí):種;當(dāng)三個(gè)盒子有球時(shí):種;當(dāng)兩個(gè)盒子有球時(shí):種.故共有種,故答案為:.【點(diǎn)睛】本題考查了排列組合的綜合應(yīng)用,意在考查學(xué)生的理解能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證

14、明過程或演算步驟。17(1)(2)【解析】(1)由,可求,然后由時(shí),可得,根據(jù)等比數(shù)列的通項(xiàng)可求(2)由,而,利用裂項(xiàng)相消法可求.【詳解】(1)當(dāng)時(shí),解得,當(dāng)時(shí),得,即,數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,;(2),.【點(diǎn)睛】本題考查遞推公式在數(shù)列的通項(xiàng)求解中的應(yīng)用,等比數(shù)列的通項(xiàng)公式、裂項(xiàng)求和方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力18(1)的值為或.(2)【解析】(1)分類討論,當(dāng)時(shí),線段與拋物線沒有公共點(diǎn),設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,當(dāng)三點(diǎn)共線時(shí),能取得最小值,利用拋物線的焦半徑公式即可求解;當(dāng)時(shí),線段與拋物線有公共點(diǎn),利用兩點(diǎn)間的距離公式即可求解. (

15、2)由題意可得軸且設(shè),則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,若線段與拋物線沒有公共點(diǎn),即時(shí),設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)共線時(shí),的最小值為,此時(shí)若線段與拋物線有公共點(diǎn),即時(shí),則三點(diǎn)共線時(shí),的最小值為:,此時(shí)綜上,實(shí)數(shù)的值為或.因?yàn)?,所以軸且設(shè),則,代入拋物線的方程解得于是,所以【點(diǎn)睛】本題考查了拋物線的焦半徑公式、直線與拋物線的位置關(guān)系中的面積問題,屬于中檔題.19(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【解析】(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結(jié)合頻率分布表

16、,先求出二聯(lián)表中數(shù)值,再結(jié)合公式計(jì)算,利用表格數(shù)據(jù)對比判斷即可【詳解】(1)因?yàn)槟猩藬?shù):女生人數(shù)900:11009:11,所以男生人數(shù)為,女生人數(shù)1004555人,(2)由頻率頻率直方圖可知學(xué)生每周平均體育鍛煉時(shí)間超過2小時(shí)的人數(shù)為:(10.3+10.25+10.15+10.05)10075人,每周平均體育鍛煉時(shí)間超過2小時(shí)的女生人數(shù)為37人,聯(lián)表如下:男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過2小時(shí)71825每周平均體育鍛煉時(shí)間超過2小時(shí)383775總計(jì)4555100因?yàn)?.8923.841,所以有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【點(diǎn)睛】本題考查分層抽樣,獨(dú)立性檢驗(yàn)

17、,熟記公式,正確計(jì)算是關(guān)鍵,屬于中檔題.20(1)證明見解析;(2).【解析】(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當(dāng)時(shí),得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,.又,.解:(2)由(1)求解知,.當(dāng)時(shí),.又,.【點(diǎn)睛】本題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題21()函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;()證明見解析;().【解析】()利用二次求導(dǎo)可得,所以在上為增函數(shù),進(jìn)而可得函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;()利用導(dǎo)數(shù)可得在區(qū)間上存在唯一零點(diǎn),所以函數(shù)在遞減,在,遞增,則,進(jìn)而可證;()條件等價(jià)于對于恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)可得的單調(diào)性,即可得到的最小值

18、為,再次構(gòu)造函數(shù)(a),利用導(dǎo)數(shù)得其單調(diào)區(qū)間,進(jìn)而求得最大值【詳解】()當(dāng)時(shí),則,所以,又因?yàn)?,所以在上為增函?shù),因?yàn)?,所以?dāng)時(shí),為增函數(shù),當(dāng)時(shí),為減函數(shù),即函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(),則令,則(1),所以在區(qū)間上存在唯一零點(diǎn),設(shè)零點(diǎn)為,則,且,當(dāng)時(shí),當(dāng),所以函數(shù)在遞減,在,遞增,由,得,所以,由于,從而;()因?yàn)閷τ诤愠闪?,即對于恒成立,不妨令,因?yàn)?,所以的解為,則當(dāng)時(shí),為增函數(shù),當(dāng)時(shí),為減函數(shù),所以的最小值為,則,不妨令(a),則(a),解得,所以當(dāng)時(shí),(a),(a)為增函數(shù),當(dāng)時(shí),(a),(a)為減函數(shù),所以(a)的最大值為,則的最大值為【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,以及函數(shù)不等式恒成立問題的解法,意在考查學(xué)生等價(jià)轉(zhuǎn)化思想和數(shù)學(xué)運(yùn)算能力,屬于較難題22(1);(2)是定值,.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論