版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、8/8第18章 勾股定理復(fù)習(xí)一知識歸納勾股定理內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,斜邊為,那么勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達哥拉斯定理我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進一步發(fā)現(xiàn)并證明了直角三角形的三邊關(guān)系為:兩直角邊的平方和等于斜邊的平方.勾股定理的證明勾股定理的證明方法很多,常見的是拼圖的方法用拼圖的方法驗證勾股定理的思路是圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變根據(jù)同一種圖形的面
2、積不同的表示方法,列出等式,推導(dǎo)出勾股定理常見方法如下:方法一:,化簡可證方法二:四個直角三角形的面積及小正方形面積的和等于大正方形的面積四個直角三角形的面積及小正方形面積的和為大正方形面積為所以方法三:,化簡得證.勾股定理的適用范圍勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征,因而在應(yīng)用勾股定理時,必須明了所考察的對象是直角三角形.勾股定理的應(yīng)用已知直角三角形的任意兩邊長,求第三邊在中,則,知道直角三角形一邊,可得另外兩邊之間的數(shù)量關(guān)系可運用勾股定理解決一些實際問題.勾股定理的逆定理如果三角形三邊長,滿足,那么這個
3、三角形是直角三角形,其中為斜邊勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和及較長邊的平方作比較,若它們相等時,以,為三邊的三角形是直角三角形;若,時,以,為三邊的三角形是鈍角三角形;若,時,以,為三邊的三角形是銳角三角形;定理中,及只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長,滿足,那么以,為三邊的三角形是直角三角形,但是為斜邊勾股定理的逆定理在用問題描述時,不能說成:當斜邊的平方等于兩條直角邊的平方和時,這個三角形是直角三角形.勾股數(shù)能夠構(gòu)成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù),即
4、中,為正整數(shù)時,稱,為一組勾股數(shù)記住常見的勾股數(shù)可以提高解題速度,如;等用含字母的代數(shù)式表示組勾股數(shù):(為正整數(shù));(為正整數(shù))(,為正整數(shù))勾股定理的應(yīng)用勾股定理能夠幫助我們解決直角三角形中的邊長的計算或直角三角形中線段之間的關(guān)系的證明問題在使用勾股定理時,必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運用勾股定理進行計算,應(yīng)設(shè)法添加輔助線(通常作垂線),構(gòu)造直角三角形,以便正確使用勾股定理進行求解.勾股定理逆定理的應(yīng)用勾股定理的逆定理能幫助我們通過三角形三邊之間的數(shù)量關(guān)系判斷一個三角形是否是直角三角形,在具體推算過程中,應(yīng)用兩短邊的平方和及最長邊的平方進行比較,
5、切不可不加思考的用兩邊的平方和及第三邊的平方比較而得到錯誤的結(jié)論.勾股定理及其逆定理的應(yīng)用勾股定理及其逆定理在解決一些實際問題或具體的幾何問題中,是密不可分的一個整體通常既要通過逆定理判定一個三角形是直角三角形,又要用勾股定理求出邊的長度,二者相輔相成,完成對問題的解決常見圖形:題型一:直接考查勾股定理例.在中,已知,求的長已知,求的長分析:直接應(yīng)用勾股定理解:題型二:應(yīng)用勾股定理建立方程例.在中,于,已知直角三角形的兩直角邊長之比為,斜邊長為,則這個三角形的面積為已知直角三角形的周長為,斜邊長為,則這個三角形的面積為分析:在解直角三角形時,要想到勾股定理,及兩直角邊的乘積等于斜邊及斜邊上高的乘積有時可根據(jù)勾股定理列方程求解解:,設(shè)兩直角邊的長分別為,設(shè)兩直角邊分別為,則,可得例.如圖中,求的長分析:此題將勾股定理及全等三角形的知識結(jié)合起來解:作于,在中在中,例4.如圖,,分別以各邊為直徑作半圓,求陰影部分面積答案:6題型三:實際問題中應(yīng)用勾股定理例5.如圖有兩棵樹,一棵高,另一棵高,兩樹相距,一只小鳥從一棵樹的樹梢飛到另一棵數(shù)的樹梢,至少飛了分析:根據(jù)題意建立數(shù)學(xué)模型,如圖,過點作,垂足為,則,在中,由勾股定理得答案:題型四:應(yīng)用勾股定理逆定理,判定一個三角形是否是直角三角形例6.已知三角形的三邊長為,判定是否為,解:,是直角三角形且,不是直角三角形例7.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 唐山大地震觀后感集合15篇
- 高中數(shù)學(xué)教學(xué)設(shè)計
- 2022春晚觀后感心得體會10篇
- 新學(xué)期生活學(xué)習(xí)計劃
- DB45T 2685-2023 青錢柳茶加工技術(shù)規(guī)程
- DB45T 2634.1-2023 道路運輸車輛主動安全智能防控系統(tǒng)設(shè)計 第1部分:平臺技術(shù)要求
- 2025廣州租房合同協(xié)議下載
- 辦公室后勤保障人員個人工作總結(jié)
- 乒乓球比賽作文300字十篇
- 2024年度外籍員工勞動爭議調(diào)解與仲裁合同3篇
- A課堂懲罰游戲
- 中國畫基礎(chǔ)-梅蘭竹菊智慧樹知到期末考試答案章節(jié)答案2024年華僑大學(xué)
- 工作轉(zhuǎn)正答辯問題
- 供應(yīng)鏈金融平臺設(shè)計方案
- 網(wǎng)絡(luò)安全技術(shù)知識競賽考試題庫500題(含答案)
- 外墻水包水清工施工合同
- 2023年國家糧食和物資儲備局招聘考試真題及答案
- 自然資源學(xué)原理(緒論)蔡運龍
- 《零件測繪》學(xué)業(yè)水平考試題庫(濃縮300題)
- 集美大學(xué)航海技術(shù)船舶避碰與值班教案2課件
- 《護理管理制度》
評論
0/150
提交評論