黑龍江省雙鴨山市重點(diǎn)中學(xué)2023學(xué)年高考數(shù)學(xué)一模試卷(含解析)_第1頁(yè)
黑龍江省雙鴨山市重點(diǎn)中學(xué)2023學(xué)年高考數(shù)學(xué)一模試卷(含解析)_第2頁(yè)
黑龍江省雙鴨山市重點(diǎn)中學(xué)2023學(xué)年高考數(shù)學(xué)一模試卷(含解析)_第3頁(yè)
黑龍江省雙鴨山市重點(diǎn)中學(xué)2023學(xué)年高考數(shù)學(xué)一模試卷(含解析)_第4頁(yè)
黑龍江省雙鴨山市重點(diǎn)中學(xué)2023學(xué)年高考數(shù)學(xué)一模試卷(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng)1考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1函數(shù)f(x)=2x-3A32C322已知直線與直線則“”是“”的( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件3已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為( )AB

2、3CD4已知且,函數(shù),若,則( )A2BCD5復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)( )A3BCD6如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某四棱錐的三視圖,則該幾何體的體積為( )A2BC6D87已知復(fù)數(shù),則的虛部是( )ABCD18的圖象如圖所示,若將的圖象向左平移個(gè)單位長(zhǎng)度后所得圖象與的圖象重合,則可取的值的是( )ABCD9已知等差數(shù)列的前n項(xiàng)和為,且,若(,且),則i的取值集合是( )ABCD10在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限11函數(shù)的圖象的大致形狀是( )ABCD12過(guò)直線上一點(diǎn)作圓的兩條切線,為

3、切點(diǎn),當(dāng)直線,關(guān)于直線對(duì)稱(chēng)時(shí),( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為_(kāi)14已知函數(shù)為上的奇函數(shù),滿足.則不等式的解集為_(kāi).15等腰直角三角形內(nèi)有一點(diǎn)P,則面積為_(kāi).16若,則_.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.18(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),

4、且.求實(shí)數(shù)的取值范圍;求證:.19(12分)已知函數(shù).()已知是的一個(gè)極值點(diǎn),求曲線在處的切線方程()討論關(guān)于的方程根的個(gè)數(shù).20(12分)已知拋物線:y22px(p0)的焦點(diǎn)為F,P是拋物線上一點(diǎn),且在第一象限,滿足(2,2)(1)求拋物線的方程;(2)已知經(jīng)過(guò)點(diǎn)A(3,2)的直線交拋物線于M,N兩點(diǎn),經(jīng)過(guò)定點(diǎn)B(3,6)和M的直線與拋物線交于另一點(diǎn)L,問(wèn)直線NL是否恒過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出該定點(diǎn),否則說(shuō)明理由21(12分)已知函數(shù) .(1)若在 處導(dǎo)數(shù)相等,證明: ;(2)若對(duì)于任意 ,直線 與曲線都有唯一公共點(diǎn),求實(shí)數(shù)的取值范圍.22(10分)已知數(shù)列和滿足,.()求與;()記數(shù)列的前

5、項(xiàng)和為,且,若對(duì),恒成立,求正整數(shù)的值.2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【答案解析】根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【題目詳解】因?yàn)楹瘮?shù)y=2x-3解得x32且函數(shù)f(x)=2x-3+1【答案點(diǎn)睛】定義域的三種類(lèi)型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2) 對(duì)實(shí)際問(wèn)題:由實(shí)際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3) 若已知函數(shù)fx的定義域?yàn)閍,b,則函數(shù)fgx2、B【答案解析】利用充分必要條件的定義可判斷兩個(gè)條件

6、之間的關(guān)系.【題目詳解】若,則,故或,當(dāng)時(shí),直線,直線 ,此時(shí)兩條直線平行;當(dāng)時(shí),直線,直線 ,此時(shí)兩條直線平行.所以當(dāng)時(shí),推不出,故“”是“”的不充分條件,當(dāng)時(shí),可以推出,故“”是“”的必要條件,故選:B.【答案點(diǎn)睛】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來(lái)考慮,后者依據(jù)兩個(gè)條件之間的推出關(guān)系,本題屬于中檔題.3、B【答案解析】根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【題目詳解】由已知可知,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【答案點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.4、C【答案解析】根據(jù)分段函數(shù)的解析

7、式,知當(dāng)時(shí),且,由于,則,即可求出.【題目詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,則,則.即.故選:C.【答案點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.5、B【答案解析】利用乘法運(yùn)算化簡(jiǎn)復(fù)數(shù)即可得到答案.【題目詳解】由已知,所以,解得.故選:B【答案點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.6、A【答案解析】先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【題目詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【答案點(diǎn)

8、睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.7、C【答案解析】化簡(jiǎn)復(fù)數(shù),分子分母同時(shí)乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【題目詳解】,所以的虛部為.故選:C【答案點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法、除法運(yùn)算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.8、B【答案解析】根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【題目詳解】由圖象可得,函數(shù)的最小正周期為,則,取,則,可得,當(dāng)時(shí),.故選:B.【答案點(diǎn)睛】本題考查利用圖象求函數(shù)解析式,同時(shí)也考查了利用函數(shù)圖象變換求參數(shù),考查計(jì)算能力,

9、屬于中等題.9、C【答案解析】首先求出等差數(shù)列的首先和公差,然后寫(xiě)出數(shù)列即可觀察到滿足的i的取值集合.【題目詳解】設(shè)公差為d,由題知,解得,所以數(shù)列為,故.故選:C.【答案點(diǎn)睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.10、D【答案解析】將復(fù)數(shù)化簡(jiǎn)得,即可得到對(duì)應(yīng)的點(diǎn)為,即可得出結(jié)果.【題目詳解】,對(duì)應(yīng)的點(diǎn)位于第四象限.故選:.【答案點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查共軛復(fù)數(shù)和復(fù)數(shù)與平面內(nèi)點(diǎn)的對(duì)應(yīng),難度容易.11、B【答案解析】根據(jù)函數(shù)奇偶性,可排除D;求得及,由導(dǎo)函數(shù)符號(hào)可判斷在上單調(diào)遞增,即可排除AC選項(xiàng).【題目詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當(dāng)時(shí),;又當(dāng)時(shí),故在上單調(diào)

10、遞增,所以,綜上,時(shí),即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【答案點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導(dǎo)函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.12、C【答案解析】判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對(duì)稱(chēng)的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得【題目詳解】如圖,設(shè)圓的圓心為,半徑為,點(diǎn)不在直線上,要滿足直線,關(guān)于直線對(duì)稱(chēng),則必垂直于直線,設(shè),則,,故選:C【答案點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查直線的對(duì)稱(chēng)性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對(duì)稱(chēng),得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角二、填空題

11、:本題共4小題,每小題5分,共20分。13、【答案解析】試題分析:根據(jù)題意,記白球?yàn)锳,紅球?yàn)锽,黃球?yàn)?,則一次取出2只球,基本事件為、共6種,其中2只球的顏色不同的是、共5種;所以所求的概率是考點(diǎn):古典概型概率14、【答案解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,再將所求不等式變形為,利用函數(shù)的單調(diào)性即可得解.【題目詳解】設(shè),則,設(shè),則.當(dāng)時(shí),此時(shí)函數(shù)單調(diào)遞減;當(dāng)時(shí),此時(shí)函數(shù)單調(diào)遞增.所以,函數(shù)在處取得極小值,也是最小值,即,即,所以,函數(shù)在上為增函數(shù),函數(shù)為上的奇函數(shù),則,則不等式等價(jià)于,又,解得.因此,不等式的解集為.故答案為:.【答案點(diǎn)睛】本題主要考查不等式的求解,構(gòu)造函數(shù),求函數(shù)的

12、導(dǎo)數(shù),利用導(dǎo)數(shù)和函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵綜合性較強(qiáng)15、【答案解析】利用余弦定理計(jì)算,然后根據(jù)平方關(guān)系以及三角形面積公式,可得結(jié)果.【題目詳解】設(shè)由題可知:由,所以化簡(jiǎn)可得:則或,即或由,所以所以故答案為:【答案點(diǎn)睛】本題主要考查余弦定理解三角形,仔細(xì)觀察,細(xì)心計(jì)算,屬基礎(chǔ)題.16、【答案解析】由, 得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡(jiǎn),再利用齊次式即可求出結(jié)果.【題目詳解】因?yàn)椋?所以,所以.故答案為:.【答案點(diǎn)睛】本題考查三角函數(shù)化簡(jiǎn)求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運(yùn)用齊次式求值,屬于對(duì)公式的考查以及對(duì)計(jì)算能力的考查.三、解答題:共70分。

13、解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【答案解析】(1)分類(lèi)討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【題目詳解】(1),.當(dāng)即時(shí),此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),在上單調(diào)遞減;時(shí),在上單調(diào)遞增;當(dāng)即時(shí),此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)?,所以,所以,綜上,.【答案點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.18、(1);(2

14、);詳見(jiàn)解析.【答案解析】(1)由函數(shù)在處的切線與直線垂直,即可得,對(duì)其求導(dǎo)并表示,代入上述方程即可解得答案;(2)已知要求等價(jià)于在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時(shí)單調(diào)性推及極值說(shuō)明即可;由可知,是方程的兩個(gè)不等的實(shí)根,由韋達(dá)定理可表達(dá)根與系數(shù)的關(guān)系,進(jìn)而用含的式子表示,令,對(duì)求導(dǎo)分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求最值證明不等式成立.【題目詳解】解:(1)依題意,故,所以,據(jù)題意可知,解得.所以實(shí)數(shù)的值為.(2)因?yàn)楹瘮?shù)在定義域上有兩個(gè)極值點(diǎn),且,所以在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根.所以解

15、得.當(dāng)時(shí),若或,函數(shù)在和上單調(diào)遞增;若,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個(gè)極值點(diǎn),且.所以,實(shí)數(shù)的取值范圍是.由可知,是方程的兩個(gè)不等的實(shí)根,所以其中.故,令,其中.故,令,在上單調(diào)遞增.由于,所以存在常數(shù),使得,即,且當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增,所以當(dāng)時(shí),又,所以,即,故得證.【答案點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、兩直線的位置關(guān)系、由極值點(diǎn)個(gè)數(shù)求參數(shù)范圍問(wèn)題,還考查了利用導(dǎo)數(shù)證明不等式成立,屬于難題.19、();()見(jiàn)解析【答案解析】()求函數(shù)的導(dǎo)數(shù),利用x=2是f (x)的一個(gè)極值點(diǎn),得f (2) =0建立方程求出a的值,結(jié)合導(dǎo)數(shù)的幾何意義進(jìn)行求解即可;()利用參數(shù)法分離法得到,

16、構(gòu)造函數(shù)求出函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,利用數(shù)形結(jié)合轉(zhuǎn)化為圖象交點(diǎn)個(gè)數(shù)進(jìn)行求解即可.【題目詳解】()因?yàn)椋瑒t,因?yàn)槭堑囊粋€(gè)極值點(diǎn),所以,即,所以,因?yàn)?,則直線方程為,即;()因?yàn)椋?,所以,設(shè),則,所以在上是增函數(shù),在上是減函數(shù),故,所以,所以,設(shè),則,所以在上是減函數(shù),上是增函數(shù),所以,所以當(dāng)時(shí),函數(shù)在是減函數(shù),當(dāng)時(shí),函數(shù)在是增函數(shù),因?yàn)闀r(shí),所以當(dāng)時(shí),方程無(wú)實(shí)數(shù)根,當(dāng)時(shí),方程有兩個(gè)不相等實(shí)數(shù)根,當(dāng)或時(shí),方程有1個(gè)實(shí)根.【答案點(diǎn)睛】本題考查函數(shù)中由極值點(diǎn)求參,導(dǎo)數(shù)的幾何意義,還考查了利用導(dǎo)數(shù)研究方程根的個(gè)數(shù)問(wèn)題,屬于難題.20、(1)y24x;(2)直線NL恒過(guò)定點(diǎn)(3,0),理由見(jiàn)解

17、析.【答案解析】(1)根據(jù)拋物線的方程,求得焦點(diǎn)F(,0),利用(2,2),表示點(diǎn)P的坐標(biāo),再代入拋物線方程求解.(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因?yàn)锳(3,2),B(3,6)在這兩條直線上,分別代入兩直線的方程可得y1y212,然后表示直線NL的方程為:yy1(x),代入化簡(jiǎn)求解.【題目詳解】(1)由拋物線的方程可得焦點(diǎn)F(,0),滿足(2,2)的P的坐標(biāo)為(2,2),P在拋物線上,所以(2)22p(2),即p2+4p120,p0,解得p2,所以拋物線的方程為:y24x;(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2

18、),則y124x1,y224x2,直線MN的斜率kMN,則直線MN的方程為:yy0(x),即y,同理可得直線ML的方程整理可得y,將A(3,2),B(3,6)分別代入,的方程可得,消y0可得y1y212,易知直線kNL,則直線NL的方程為:yy1(x),即yx,故yx,所以y(x+3),因此直線NL恒過(guò)定點(diǎn)(3,0)【答案點(diǎn)睛】本題主要考查了拋物線的方程及直線與拋物線的位置關(guān)系,直線過(guò)定點(diǎn)問(wèn)題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.21、(I)見(jiàn)解析(II)【答案解析】(1)由題x0,由f(x)在x=x1,x2(x1x2)處導(dǎo)數(shù)相等,得到,得,由韋達(dá)定理得,由基本不等式得,得,由題意得,令,則,令,利用導(dǎo)數(shù)性質(zhì)能證明(2)由得,令,利用反證法可證明證明恒成立由對(duì)任意,只有一個(gè)解,得為上的遞增函數(shù),得,令,由此可求的取值范圍.【題目詳解】(I)令,得,由韋達(dá)定理得即,得令,則,令,則,得(II)由得令,則,下面先證明恒成立若存在,使得,且當(dāng)自變量充分大時(shí),所以存在,使得,取,則與至少有兩個(gè)交點(diǎn),矛盾由對(duì)任意,只有一個(gè)解,得為上的遞增函數(shù),得,令,則,得【答案點(diǎn)睛】本題考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的運(yùn)算及其應(yīng)用,同時(shí)考查邏輯思維能力和綜合應(yīng)用能力屬難題22、(),;

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論