初一同底數(shù)冪乘法教案_第1頁
初一同底數(shù)冪乘法教案_第2頁
初一同底數(shù)冪乘法教案_第3頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Word———初一同底數(shù)冪乘法教案你知道怎么寫初一同底數(shù)冪乘法教案嗎?在多項(xiàng)式與多項(xiàng)式的乘法中適當(dāng)添括號(hào)達(dá)到應(yīng)用公式的目的.一起看看初一同底數(shù)冪乘法教案!歡迎查閱!

初一同底數(shù)冪乘法教案1

一、學(xué)習(xí)目標(biāo):1.添括號(hào)法則.

2.利用添括號(hào)法則敏捷應(yīng)用完全平方公式

二、重點(diǎn)難點(diǎn)

重點(diǎn):理解添括號(hào)法則,進(jìn)一步熟識(shí)乘法公式的合理利用

難點(diǎn):在多項(xiàng)式與多項(xiàng)式的乘法中適當(dāng)添括號(hào)達(dá)到應(yīng)用公式的目的.

三、合作學(xué)習(xí)

Ⅰ.提出問題,創(chuàng)設(shè)情境

請同學(xué)們完成下列運(yùn)算并回憶去括號(hào)法則.

(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)

去括號(hào)法則:

去括號(hào)時(shí),假如括號(hào)前是正號(hào),去掉括號(hào)后,括號(hào)里的每一項(xiàng)都不變號(hào);

假如括號(hào)前是負(fù)號(hào),去掉括號(hào)后,括號(hào)里的各項(xiàng)都要變號(hào)。

1.在等號(hào)右邊的括號(hào)內(nèi)填上適當(dāng)?shù)捻?xiàng):

(1)a+b-c=a+()(2)a-b+c=a-()

(3)a-b-c=a-()(4)a+b+c=a-()

2.推斷下列運(yùn)算是否正確.

(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)

添括號(hào)法則:添上一個(gè)正括號(hào),擴(kuò)到括號(hào)里的不變號(hào),添上一個(gè)負(fù)括號(hào),擴(kuò)到括號(hào)里的要變號(hào)。

五、精講精練

例:運(yùn)用乘法公式計(jì)算

(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2

(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)

隨堂練習(xí):教科書練習(xí)

五、小結(jié):去括號(hào)法則

六、作業(yè):教科書習(xí)題

初一同底數(shù)冪乘法教案2

一、學(xué)習(xí)目標(biāo):讓同學(xué)了解多項(xiàng)式公因式的意義,初步會(huì)用提公因式法分解因式

二、重點(diǎn)難點(diǎn)

重點(diǎn):能觀看出多項(xiàng)式的公因式,并依據(jù)安排律把公因式提出來

難點(diǎn):讓同學(xué)識(shí)別多項(xiàng)式的公因式.

三、合作學(xué)習(xí):

公因式與提公因式法分解因式的概念.

三個(gè)矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)

既ma+mb+mc=m(a+b+c)

由上式可知,把多項(xiàng)式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當(dāng)于把公因式m從各項(xiàng)中提出來,作為多項(xiàng)式ma+mb+mc的一個(gè)因式,把m從多項(xiàng)式ma+mb+mc各項(xiàng)中提出后形成的多項(xiàng)式(a+b+c),作為多項(xiàng)式ma+mb+mc的另一個(gè)因式,這種分解因式的方法叫做提公因式法。

四、精講精練

例1、將下列各式分解因式:

(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3)a(x-3)+2b(x-3)

通過剛才的練習(xí),下面大家相互溝通,總結(jié)出找公因式的一般步驟.

首先找各項(xiàng)系數(shù)的____________________,如8和12的公約數(shù)是4.

其次找各項(xiàng)中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的.

課堂練習(xí)

1.寫出下列多項(xiàng)式各項(xiàng)的公因式.

(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72(2)a2b-5ab

(3)4m3-6m2(4)a2b-5ab+9b

(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2

初一同底數(shù)冪乘法教案3

一、學(xué)習(xí)目標(biāo):1.使同學(xué)了解運(yùn)用公式法分解因式的意義;

2.使同學(xué)把握用平方差公式分解因式

二、重點(diǎn)難點(diǎn)

重點(diǎn):把握運(yùn)用平方差公式分解因式.

難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式;

學(xué)習(xí)方法:歸納、概括、總結(jié)

三、合作學(xué)習(xí)

創(chuàng)設(shè)問題情境,引入新課

在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成幾個(gè)因式乘積的形式.

假如一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法.

1.請看乘法公式

(a+b)(a-b)=a2-b2(1)

左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過來就是

a2-b2=(a+b)(a-b)(2)

左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積.大家推斷一下,其次個(gè)式子從左邊到右邊是否是因式分解?

利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式講解

如x2-16

=(x)2-42

=(x+4)(x-4).

9m2-4n2

=(3m)2-(2n)2

=(3m+2n)(3m-2n)

四、精講精練

例1、把下列各式分解因式:

(1)25-16x2;(2)9a2-b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2;(2)2x3-8x.

補(bǔ)充例題:推斷下列分解因式是否正確.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)?(a2-1).

五、課堂練習(xí)教科書練習(xí)

六、作業(yè)1、教科書習(xí)題

2、分解因式:x4-16x3-4x4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

初一同底數(shù)冪乘法教案4

一、學(xué)習(xí)目標(biāo):

1.使同學(xué)會(huì)用完全平方公式分解因式.

2.使同學(xué)學(xué)習(xí)多步驟,多方法的分解因式

二、重點(diǎn)難點(diǎn):

重點(diǎn):讓同學(xué)把握多步驟、多方法分解因式方法

難點(diǎn):讓同學(xué)學(xué)會(huì)觀看多項(xiàng)式特點(diǎn),恰當(dāng)支配步驟,恰當(dāng)?shù)剡x用不同方法分解因式

三、合作學(xué)習(xí)

創(chuàng)設(shè)問題情境,引入新課

完全平方公式(a±b)2=a2±2ab+b2

講授新課

1.推導(dǎo)用完全平方公式分解因式的公式以及公式的特點(diǎn).

將完全平方公式倒寫:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具備這些特點(diǎn)的三項(xiàng)式,就是一個(gè)二項(xiàng)式的完全平方,將它寫成平方形式,便實(shí)現(xiàn)了因式分解

用語言敘述為:兩個(gè)數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

由分解因式與整式乘法的關(guān)系可以看出,假如把乘法公式反過來,那么就可以用來把某些多項(xiàng)式分解因式,這種分解因式的方法叫做運(yùn)用公式法.

練一練.下列各式是不是完全平方式?

(1)a2-4a+4;(2)x2+4x+4y2;

(3)4a2+2ab+b2;(4)a2-ab+b2;

四、精講精練

例1、把下列完全平方式分解因式:

(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.

例2、把下列各式分解因式:

(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.

課堂練習(xí):教科書練習(xí)

補(bǔ)充練習(xí):把下列各式分解因式:

(1)(x+y)2+6(x+y)+9;(2)4(2a+b)2-12(2a+b)+9;

五、小結(jié):兩個(gè)數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

六、作業(yè):1、

2、分解因式:

X2-4x+42x2-4x+2(x2+y2)2-8(x2+y2)+16(x2+y2)2-4x2y2

45ab2-20a-a+a3a-ab2a4-1(a2+1)2-4(a2+1)+4

初一同底數(shù)冪乘法教案5

【學(xué)習(xí)過程】

一、閱讀教材

二、自立完成下列預(yù)習(xí)作業(yè):

1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式.

2、表示÷的商,可以表示為.

3、長方形的面積為10,長為7cm,寬應(yīng)為cm;長方形的面積為S,長為a,寬應(yīng)為.

4、把體積為20的水倒入底面積為33的圓柱形容器中,水面高度為cm;把體積為V的水倒入底面積為S的圓柱形容器中,水面高度為.

一般地,假如A、B表示兩個(gè)整式,并且B中含有字母,那么式子叫做分式.

◆◆分式和整式統(tǒng)稱有理式◆◆

三、合作溝通,解決問題:

分式的分母表示除數(shù),由于除數(shù)不能為0,故分式的分母不能為0,即當(dāng)B≠0時(shí),分式才有意義.分子分母相等時(shí)分式的值為1、分子分母互為相反數(shù)時(shí)分式的值為-1.

1、當(dāng)x時(shí),分式有意義;

2、當(dāng)x時(shí),分式有意義;

3、當(dāng)b時(shí),分式有意義;

4、當(dāng)x、y滿意時(shí),分式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論