2022-2023學(xué)年吉林省長春新區(qū)九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第1頁
2022-2023學(xué)年吉林省長春新區(qū)九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第2頁
2022-2023學(xué)年吉林省長春新區(qū)九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第3頁
2022-2023學(xué)年吉林省長春新區(qū)九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第4頁
2022-2023學(xué)年吉林省長春新區(qū)九年級數(shù)學(xué)上冊期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.某班有40人,一次體能測試后,老師對測試成績進行了統(tǒng)計.由于小亮沒有參加本次集體測試因此計算其他39人的平均分為90分,方差s2=1.后來小亮進行了補測,成績?yōu)?0分,關(guān)于該班40人的測試成績,下列說法正確的是()A.平均分不變,方差變大 B.平均分不變,方差變小C.平均分和方差都不變 D.平均分和方差都改變2.國家實施”精準(zhǔn)扶貧“政策以來,很多貧困人口走向了致富的道路.某地區(qū)2016年底有貧困人口9萬人,通過社會各界的努力,2018年底貧困人口減少至1萬人.設(shè)2016年底至2018年底該地區(qū)貧困人口的年平均下降率為,根據(jù)題意列方程得()A. B. C. D.3.如圖,△AOB為等腰三角形,頂點A的坐標(biāo)(2,),底邊OB在x軸上.將△AOB繞點B按順時針方向旋轉(zhuǎn)一定角度后得△A′O′B,點A的對應(yīng)點A′在x軸上,則點O′的坐標(biāo)為()A.(,) B.(,) C.(,) D.(,4)4.我國民間,流傳著許多含有吉祥意義的文字圖案,表示對幸福生活的向往,良辰佳節(jié)的祝賀.比如下列圖案分別表示“?!?、“祿”、“壽”、“喜”,其中是中心對稱圖形的是()A.①③ B.①④ C.②③ D.②④5.已知一元二次方程x2+kx﹣5=0有一個根為1,k的值為()A.﹣2 B.2 C.﹣4 D.46.已知二次函數(shù)y=x2+2x-m與x軸沒有交點,則m的取值范圍是()A.m<-1 B.m>-1 C.m<-1且m≠0 D.m>-1且m≠07.如圖,直線l1∥l2∥l3,兩條直線AC和DF與l1,l2,l3分別相交于點A、B、C和點D、E、F,則下列比例式不正確的是()A. B. C. D.8.如圖所示,A,B是函數(shù)的圖象上關(guān)于原點O的任意一對對稱點,AC平行于y軸,BC平行于x軸,△ABC的面積為S,則()A.S=1 B.S=2 C.1<S<2 D.S>29.如圖,AC,BE是⊙O的直徑,弦AD與BE交于點F,下列三角形中,外心不是點O的是()A.△ABE B.△ACF C.△ABD D.△ADE10.如圖所示,在半徑為10cm的⊙O中,弦AB=16cm,OC⊥AB于點C,則OC等于()A.3cm B.4cm C.5cm D.6cm二、填空題(每小題3分,共24分)11.比較大?。篲____1.(填“>”、“=”或“<”)12.某商場在“元旦”期間推出購物摸獎活動,摸獎箱內(nèi)有除顏色以外完全相同的紅色、白色乒乓球各兩個.顧客摸獎時,一次摸出兩個球,如果兩個球的顏色相同就得獎,顏色不同則不得獎.那么顧客摸獎一次,得獎的概率是_______.13.如圖,在?ABCD中,AB=6,BC=6,∠D=30°,點E是AB邊的中點,點F是BC邊上一動點,將△BEF移沿直線EF折疊,得到△GEF,當(dāng)FG∥AC時,BF的長為_____.14.如圖,把繞著點順時針方向旋轉(zhuǎn)角度(),得到,若,,三點在同一條直線上,,則的度數(shù)是___________.15.已知兩個數(shù)的差等于2,積等于15,則這兩個數(shù)中較大的是.16.若扇形的半徑長為3,圓心角為60°,則該扇形的弧長為___.17.一元二次方程的根是_____.18.小強同學(xué)從,,,這四個數(shù)中任選一個數(shù),滿足不等式的概率是__________.三、解答題(共66分)19.(10分)某商場經(jīng)銷一種布鞋,已知這種布鞋的成本價為每雙30元.市場調(diào)查發(fā)現(xiàn),這種布鞋每天的銷售量y(單位:雙)與銷售單價x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).設(shè)這種布鞋每天的銷售利潤為w元.(1)求w與x之間的函數(shù)解析式;(2)這種布鞋銷售單價定價為多少元時,每天的銷售利潤最大?最大利潤是多少元?20.(6分)如圖,的三個頂點坐標(biāo)分別是,,.(1)將先向左平移4個單位長度,再向上平移2個單位長度,得到,畫出;(2)與關(guān)于原點成中心對稱,畫出.21.(6分)如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過點C作CE⊥BD于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取FG=BD,連接BG、DF.(1)求證:四邊形BDFG為菱形;(2)若AG=13,CF=6,求四邊形BDFG的周長.22.(8分)如圖,拋物線y=a(x+2)(x﹣4)與x軸交于A,B兩點,與y軸交于點C,且∠ACO=∠CBO.(1)求線段OC的長度;(2)若點D在第四象限的拋物線上,連接BD、CD,求△BCD的面積的最大值;(3)若點P在平面內(nèi),當(dāng)以點A、C、B、P為頂點的四邊形是平行四邊形時,直接寫出點P的坐標(biāo).23.(8分)二次函數(shù)圖象的頂點在原點O,經(jīng)過點A(1,);點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.(1)求二次函數(shù)的解析式;(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;(3)當(dāng)△FPM是等邊三角形時,求P點的坐標(biāo).24.(8分)已知反比例函數(shù)的圖像經(jīng)過點(2,-3).(1)求這個函數(shù)的表達式.(2)點(-1,6),(3,2)是否在這個函數(shù)的圖像上?(3)這個函數(shù)的圖像位于哪些象限?函數(shù)值y隨自變量的增大如何變化?25.(10分)如圖,已知拋物線經(jīng)過坐標(biāo)原點和軸上另一點,頂點的坐標(biāo)為.矩形的頂點與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=1.(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;(2)將矩形以每秒個單位長度的速度從圖1所示的位置沿軸的正方向勻速平行移動,同時一動點也以相同的速度從點出發(fā)向勻速移動,設(shè)它們運動的時間為秒,直線與該拋物線的交點為(如圖2所示).①當(dāng),判斷點是否在直線上,并說明理由;②設(shè)P、N、C、D以為頂點的多邊形面積為,試問是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.26.(10分)如圖,為等腰三角形,,是底邊的中點,與腰相切于點.(1)求證:與相切;(2)已知,,求的半徑.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)平均數(shù)、方差的定義計算即可.【詳解】∵小亮的成績和其它39人的平均數(shù)相同,都是90分,∴40人的平均數(shù)是90分,∵39人的方差為1,小亮的成績是90分,40人的平均分是90分,∴40人的方差為[1×39+(90-90)2]÷40<1,∴方差變小,∴平均分不變,方差變小故選B.【點睛】本題考查了平均數(shù)與方差,熟練掌握定義是解題關(guān)鍵.2、B【分析】等量關(guān)系為:2016年貧困人口年貧困人口,把相關(guān)數(shù)值代入計算即可.【詳解】解:設(shè)這兩年全省貧困人口的年平均下降率為,根據(jù)題意得:,故選B.【點睛】本題考查由實際問題抽象出一元二次方程,得到2年內(nèi)變化情況的等量關(guān)系是解決本題的關(guān)鍵.3、C【分析】利用等面積法求O'的縱坐標(biāo),再利用勾股定理或三角函數(shù)求其橫坐標(biāo).【詳解】解:過O′作O′F⊥x軸于點F,過A作AE⊥x軸于點E,∵A的坐標(biāo)為(1,),∴AE=,OE=1.由等腰三角形底邊上的三線合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,則A′B=3,由旋轉(zhuǎn)前后三角形面積相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐標(biāo)為().故選C.【點睛】本題考查坐標(biāo)與圖形的旋轉(zhuǎn)變化;勾股定理;等腰三角形的性質(zhì);三角形面積公式.4、D【分析】根據(jù)中心對稱圖形的定義,結(jié)合選項所給圖形進行判斷即可.【詳解】解:①不是中心對稱圖形,故本選項不合題意;②是中心對稱圖形,故本選項符合題意;③不是中心對稱圖形,故本選項不合題意;④是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題考查了中心對稱圖形的定義,熟悉掌握概念是解題的關(guān)鍵5、D【分析】根據(jù)一元二次方程的解的定義,把x=1代入方程得到關(guān)于k的一次方程1﹣5+k=0,然后解一次方程即可.【詳解】解:把x=1代入方程得1+k﹣5=0,解得k=1.故選:D.【點睛】本題考查一元二次方程的解.熟記一元二次方程解得定義是解決此題的關(guān)鍵.6、A【分析】函數(shù)y=x2+2x-m的圖象與x軸沒有交點,用根的判別式:△<0,即可求解.【詳解】令y=0,即:x2+2x-m=0,△=b2?4ac=4+4m<0,即:m<-1,故選:A.【點睛】本題考查的是二次函數(shù)圖象與x軸的交點,此類題目均是利用△=b2?4ac和零之間的關(guān)系來確定圖象與x軸交點的數(shù)目,即:當(dāng)△>0時,函數(shù)與x軸有2個交點,當(dāng)△=0時,函數(shù)與x軸有1個交點,當(dāng)△<0時,函數(shù)與x軸無交點.7、D【解析】試題分析:根據(jù)平行線分線段成比例定理,即可進行判斷.解:∵l1∥l2∥l3,∴,,,.∴選項A、B、C正確,D錯誤.故選D.點睛:本題是一道關(guān)于平行線分線段成比例的題目,掌握平行線分線段成比例的相關(guān)知識是解答本題的關(guān)鍵8、B【分析】設(shè)點A(m,),則根據(jù)對稱的性質(zhì)和垂直的特點,可以表示出B、C的坐標(biāo),根據(jù)坐標(biāo)關(guān)系得出BC、AC的長,從而得出△ABC的面積.【詳解】設(shè)點A(m,)∵A、B關(guān)于原點對稱∴B(-m,)∴C(m,)∴AC=,BC=2m∴=2故選:B【點睛】本題考查反比例函數(shù)和關(guān)于原點對稱點的求解,解題關(guān)鍵是表示出A、B、C的坐標(biāo),從而得出△ABC的面積.9、B【解析】試題分析:A.OA=OB=OE,所以點O為△ABE的外接圓圓心;B.OA=OC≠OF,所以點不是△ACF的外接圓圓心;C.OA=OB=OD,所以點O為△ABD的外接圓圓心;D.OA=OD=OE,所以點O為△ADE的外接圓圓心;故選B考點:三角形外心10、D【分析】根據(jù)垂徑定理可知AC的長,再根據(jù)勾股定理即可求出OC的長.【詳解】解:連接OA,如圖:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在RtOAC中,OC===6(cm),故選:D.【點睛】本題考查的是垂徑定理、勾股定理,熟練掌握垂徑定理,構(gòu)造出直角三角形是解答此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、>.【解析】先求出1=,再比較即可.【詳解】∵12=9<10,∴>1,故答案為>.【點睛】本題考查了實數(shù)的大小比較和算術(shù)平方根的應(yīng)用,用了把根號外的因式移入根號內(nèi)的方法.12、【分析】根據(jù)題意列舉出所有情況,并得出兩球顏色相同的情況,運用概率公式進行求解.【詳解】解:一次摸出兩個球的所有情況有(紅1,紅2),(紅1,白1),(紅1,白2),(紅2,白1),(紅2,白2),(白1,白2)6種,其中兩球顏色相同的有2種.所以得獎的概率是.故答案為:.【點睛】本題考查概率的概念和求法,熟練掌握概率的概念即概率=所求情況數(shù)與總情況數(shù)之比和求法是解題的關(guān)鍵.13、或【分析】由平行四邊形的性質(zhì)得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,得出AH=DH,由線段垂直平分線的性質(zhì)得出CA=CD=AB=6,由等腰三角形的性質(zhì)得出∠ACB=∠B=30°,由平行線的性質(zhì)得出∠BFG=∠ACB=30°,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,則∠ENB=∠B=30°,由直角三角形的性質(zhì)得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再證出FN=EN=3,即可得出結(jié)果;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,則∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,證出FG∥EN,則∠G=∠GEN,證出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折疊的性質(zhì)得∠BEF=∠GEF=∠BEG=45°,證出∠NEF=∠NFE,則FN=EN=3,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵點E是AB邊的中點,∴BE=3,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,連接EN,如圖1所示:則∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折疊的性質(zhì)得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,如圖2所示:則∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折疊的性質(zhì)得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折疊的性質(zhì)得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案為:或.【點睛】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;掌握翻折變換的性質(zhì)和等腰三角形的性質(zhì)是解答本題的關(guān)鍵.14、【分析】首先根據(jù)鄰補角定義求出∠BCC′=180°-∠BCB′=134°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠BCA=∠C′,AC=AC′,根據(jù)等邊對等角進一步可得出∠BCA=∠ACC′=∠C′,再利用三角形內(nèi)角和求出∠CAC′的度數(shù),從而得出α的度數(shù)..【詳解】解:∵B,C,C′三點在同一條直線上,∴∠BCC′=180°-∠BCB′=134°,

又根據(jù)旋轉(zhuǎn)的性質(zhì)可得,∠CAC′=∠BAB′=α,∠BCA=∠C′,AC=AC′,∴∠ACC′=∠C′,∴∠BCA=∠ACC′=∠BCC′=67°=∠C′,

∴∠CAC′=180°-∠ACC′-∠C′=46°,

∴α=46°.

故答案為:46°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等;②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;③旋轉(zhuǎn)前、后的圖形全等.同時也考查了等腰三角形的性質(zhì),三角形的內(nèi)角和以及鄰補角的定義.15、5【分析】設(shè)這兩個數(shù)中的大數(shù)為x,則小數(shù)為x﹣2,由題意建立方程求其解即可.【詳解】解:設(shè)這兩個數(shù)中的大數(shù)為x,則小數(shù)為x﹣2,由題意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴這兩個數(shù)中較大的數(shù)是5,故答案為5;考點:一元二次方程的應(yīng)用.16、【分析】根據(jù)弧長的公式列式計算即可.【詳解】∵一個扇形的半徑長為3,且圓心角為60°,

∴此扇形的弧長為=π.

故答案為:π.【點睛】此題考查弧長公式,熟記公式是解題關(guān)鍵.17、【分析】利用因式分解法把方程化為x-3=0或x-2=0,然后解兩個一次方程即可.【詳解】解:或,所以.故答案為.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.18、【分析】找到滿足不等式x+1<2的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】解:在0,1,2,3這四個數(shù)中,滿足不等式x+1<2的中只有0一個數(shù),

所以滿足不等式x+1<2的概率是.故答案是:.【點睛】本題主要考查概率公式,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.三、解答題(共66分)19、(1)w=﹣x2+90x﹣1800;(2)這種布鞋銷售單價定價為45元時,每天的銷售利潤最大,最大利潤是,225元【分析】(1)由題意根據(jù)每天的銷售利潤W=每天的銷售量×每件產(chǎn)品的利潤,即可列出w與x之間的函數(shù)解析式;(2)根據(jù)題意對w與x之間的函數(shù)解析式進行配方,即可求得答案.【詳解】解:(1)w=(x﹣30)?y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w與x之間的函數(shù)解析式w=﹣x2+90x﹣1800;(2)根據(jù)題意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,當(dāng)x=45時,w有最大值,最大值是225;答:這種布鞋銷售單價定價為45元時,每天的銷售利潤最大,最大利潤是225元.【點睛】本題考查二次函數(shù)的應(yīng)用,根據(jù)題意得到每天的銷售利潤的關(guān)系式是解決本題的關(guān)鍵以及利用配方法或公式法求得二次函數(shù)的最值問題是常用的解題方法.20、答案見解析.【分析】(1)將的三個頂點進行平移得到對應(yīng)點,再順次連接即可求解;(2)找到△ABC的三個得到關(guān)于原點的對稱點,再順次連接即可求解.【詳解】(1)為所求;(2)為所求.【點睛】此題主要考查坐標(biāo)與圖形,解題的關(guān)鍵是根據(jù)題意找到各頂點的對應(yīng)點.21、(1)證明見解析;(2)1.【分析】(1)由BD=FG,BD//FG可得四邊形BDFG是平行四邊形,根據(jù)CE⊥BD可得∠CFA=∠CED=90°,根據(jù)直角三角形斜邊中線的性質(zhì)可得BD=DF=AC,即可證得結(jié)論;(2)設(shè)GF=x,則AF=13﹣x,AC=2x,利用勾股定理列方程可求出x的值,進而可得答案.【詳解】(1)∵AG∥BD,BD=FG,∴四邊形BGFD是平行四邊形,∵CF⊥BD,BD//AG,∴∠CFA=∠CED=90°,∵點D是AC中點,∴DF=AC,∵∠ABC=90°,BD為AC的中線,∴BD=AC,∴BD=DF,∴平行四邊形BGFD是菱形.(2)設(shè)GF=x,則AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,x=﹣(舍去),∵四邊形BDFG是菱形,∴四邊形BDFG的周長=4GF=1.【點睛】本題考查菱形的判定與性質(zhì)及直角三角形斜邊中線的性質(zhì),熟練掌握直角三角形斜邊中線等于斜邊一半的性質(zhì)是解題關(guān)鍵.22、(1)2;(2)2;(3)(2,2),(6,﹣2)或(﹣6,﹣2)【分析】(1)由拋物線的解析式先求出點A,B的坐標(biāo),再證△AOC∽△COB,利用相似三角形的性質(zhì)可求出CO的長;(2)先求出拋物線的解析式,再設(shè)出點D的坐標(biāo)(m,m2﹣m﹣2),用含m的代數(shù)式表示出△BCD的面積,利用函數(shù)的性質(zhì)求出其最大值;(3)分類討論,分三種情況由平移規(guī)律可輕松求出點P的三個坐標(biāo).【詳解】(1)在拋物線y=a(x+2)(x﹣4)中,當(dāng)y=0時,x1=﹣2,x2=4,∴A(﹣2,0),B(4,0),∴AO=2,BO=4,∵∠ACO=∠CBO,∠AOC=∠COB=90°,∴△AOC∽△COB,∴,即,∴CO=2;(2)由(1)知,CO=2,∴C(0,﹣2)將C(0,﹣2)代入y=a(x+2)(x﹣4),得,a=,∴拋物線解析式為:y=x2﹣x﹣2,如圖1,連接OD,設(shè)D(m,m2﹣m﹣2),則S△BCD=S△OCD+S△OBD﹣S△BOC=×2m+×4(﹣m2+m+2)﹣×4×2=﹣m2+2m=﹣(m﹣2)2+2,根據(jù)二次函數(shù)的圖象及性質(zhì)可知,當(dāng)m=2時,△BCD的面積有最大值2;(3)如圖2﹣1,當(dāng)四邊形ACBP為平行四邊形時,由平移規(guī)律可知,點C向右平移4個單位長度,再向上平移2個單位長度得到點B,所以點A向右平移4個單位長度,再向上平移2個單位長度得到點P,因為A(﹣2,0),所以P1(2,2);同理,在圖2﹣2,圖2﹣3中,可由平移規(guī)律可得P2(6,﹣2),P3(﹣6,﹣2);綜上所述,當(dāng)以點A、C、B、P為頂點的四邊形是平行四邊形時,點P的坐標(biāo)為(2,2),(6,﹣2),P3(﹣6,﹣2).【點睛】本題考查了相似三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)的解析式,三角形的面積及平移規(guī)律等,解題關(guān)鍵是熟知平行四邊形的性質(zhì)及熟練運用平移規(guī)律.23、(1)y=x2;(2)證明見解析;(3)(,3)或(﹣,3).【解析】試題分析:(1)根據(jù)題意可設(shè)函數(shù)的解析式為y=ax2,將點A代入函數(shù)解析式,求出a的值,繼而可求得二次函數(shù)的解析式;(2)過點P作PB⊥y軸于點B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,結(jié)合平行線的性質(zhì),可得出結(jié)論;(3)首先可得∠FMH=30°,設(shè)點P的坐標(biāo)為(x,x2),根據(jù)PF=PM=FM,可得關(guān)于x的方程,求出x的值即可得出答案.試題解析:(1)∵二次函數(shù)圖象的頂點在原點O,∴設(shè)二次函數(shù)的解析式為y=ax2,將點A(1,)代入y=ax2得:a=,∴二次函數(shù)的解析式為y=x2;(2)∵點P在拋物線y=x2上,∴可設(shè)點P的坐標(biāo)為(x,x2),過點P作PB⊥y軸于點B,則BF=|x2﹣1|,PB=|x|,∴Rt△BPF中,PF==x2+1,∵PM⊥直線y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥y軸,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)當(dāng)△FPM是等邊三角形時,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴滿足條件的點P的坐標(biāo)為(2,3)或(﹣2,3).【考點】二次函數(shù)綜合題.24、(1)y=-;(2)(-1,6)在函數(shù)圖像上,(3,2)不在函數(shù)圖像上;(3)二、四象限,在每個象限內(nèi),y隨x的增大而增大.【分析】(1)根據(jù)待定系數(shù)法求得即可;(2)根據(jù)圖象上點的坐標(biāo)特征,把點(﹣1,6),(3,2)代入解析式即可判斷;(3)根據(jù)反比例函數(shù)的性質(zhì)即可得到結(jié)論.【詳解】(1)設(shè)反比例函數(shù)的解析式為y(k≠0).∵反比例函數(shù)的圖象經(jīng)過點(2,﹣3),∴k=2×(﹣3)=﹣6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論