數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)_第1頁(yè)
數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)_第2頁(yè)
數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)學(xué)業(yè)程度知識(shí)點(diǎn)因?yàn)楦咧虚_(kāi)場(chǎng)努力,所以前面的知識(shí)肯定有一定的欠缺,這就要求自己要制定一定的方案,更要比別人付出更多的努力,相信付出的汗水不會(huì)白白流淌的,收獲總是自己的。嘔心瀝血搜集整理的數(shù)學(xué)學(xué)業(yè)程度知識(shí)點(diǎn),下面就帶大家分享展示一下!!!

數(shù)學(xué)學(xué)業(yè)程度知識(shí)點(diǎn)1

考點(diǎn)一、映射的概念

1.理解對(duì)應(yīng)大千世界的對(duì)應(yīng)共分四類,分別是:一對(duì)一多對(duì)一一對(duì)多多對(duì)多

2.映射:設(shè)A和B是兩個(gè)非空集合,假如按照某種對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對(duì)應(yīng),簡(jiǎn)稱“對(duì)一〞的對(duì)應(yīng)。包括:一對(duì)一多對(duì)一

考點(diǎn)二、函數(shù)的概念

1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,假如按照某種確定的對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù)。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對(duì)應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。

2.函數(shù)的三要素:定義域、值域、對(duì)應(yīng)關(guān)系。這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的根據(jù)。

3.區(qū)間的概念:設(shè)a,bR,且a

①(a,b)={xa

⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(-∞,b)={

考點(diǎn)三、函數(shù)的表示方法

1.函數(shù)的三種表示方法列表法圖象法解析法

2.分段函數(shù):定義域的不同部分,有不同的對(duì)應(yīng)法那么的函數(shù)。注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

考點(diǎn)四、求定義域的幾種情況

①假設(shè)f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;

②假設(shè)f(x)是分式,那么函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;

③假設(shè)f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于0的實(shí)數(shù)集合;

④假設(shè)f(x)是對(duì)數(shù)函數(shù),真數(shù)應(yīng)大于零。

⑤.因?yàn)榱愕牧愦蝺鐩](méi)有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。

⑥假設(shè)f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;

⑦假設(shè)f(x)是由實(shí)際問(wèn)題抽象出來(lái)的函數(shù),那么函數(shù)的定義域應(yīng)符合實(shí)際問(wèn)題

數(shù)學(xué)學(xué)業(yè)程度知識(shí)點(diǎn)2

1.求函數(shù)的單調(diào)性:

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的根本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)假如恒f(x)0,那么函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)假如恒f(x)0,那么函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)假如恒f(x)0,那么函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的根本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不連續(xù)區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不連續(xù)區(qū)間為減區(qū)間。

反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

(1)假如函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),那么f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(2)假如函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),那么f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(3)假如函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),那么f(x)0恒成立。

2.求函數(shù)的極值:

設(shè)函數(shù)yf(x)在x0及其附近有定義,假如對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),那么稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

可導(dǎo)函數(shù)的極值,可通過(guò)研究函數(shù)的單調(diào)性求得,根本步驟是:

(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成假設(shè)干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:

(4)檢查f(x)的符號(hào)并由表格判斷極值。

3.求函數(shù)的值與最小值:

假如函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),那么稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。

求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。

4.解決不等式的有關(guān)問(wèn)題:

(1)不等式恒成立問(wèn)題(絕對(duì)不等式問(wèn)題)可考慮值域。

f(x)(xA)的值域是[a,b]時(shí),

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時(shí),

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

5.導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

實(shí)際生活求解(小)值問(wèn)題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來(lái)求函數(shù)最值時(shí),一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明。

數(shù)學(xué)學(xué)業(yè)程度知識(shí)點(diǎn)3

1.定義法:

判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫(huà)出箭頭示意圖,再利用定義判斷即可。

2.轉(zhuǎn)換法:

當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)展等價(jià)裝換,例如改用其逆否命題進(jìn)展判斷。

3.集合法

在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論