版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
IntroductiononFabflowandsemiconductorindustry--forITrelatedemployeeMorrisL.YehUMC.Fab8AB.PEI.Logic2IntroductiononFabflowandsOutline
1.FabflowandTransistorworking2.ICmanufacturingchain3.Filedapplication4.TheTrendOutline1.FabflowandTransiTheRoadmap
TheRoadmap1.1TransistorWorking1.What’stheTransistor?2.What’stheTransistorstructure?3.How’sthetransistorworking?4.TransistorandSystemrevolution3.1How’stheclockrunninginthetransistorring?3.2How’stheinformationbroadcastinginasystem?1.1TransistorWorking1.What’1.What’stheTransistor?TransistorWorkingInDigitalapplication,thetransistorplaytheroleofswitchinthesystemjustlikeamechanicalswitch,itmeansthatthekeycomponenttostoragethe0and1
State1State0ButwedeployedtheSolid-StateandQuantumphysicstorealizethesolid-stateswitch-Transistorinsiliconindustry,it’smoresizeshrinkage,highspeed,highperformanceandlowerenergyrequiredthanthepriorarts.State1State01.What’stheTransistor?Tran2.What’stheTransistorstructure?TransistorWorkingGateOxideUMC.Fab8B.Generic0.25umlogicTi-SalicideProcessPolyTiSi2SpacerSourceDrainChannelLengthLDDPOLYThetransistorincluded3terminalwhichlikestheswitch:1.PolyGateplaytheroleofcontrolorinputterminal,theDrainplaytheroleofoutputterminalandtheSourceplaytheroleofreferenceorground.2.What’stheTransistorstruc3.How’sthetransistorworking?TransistorWorkingState1DrainBias(charge)TimesLevel(V)State0GateBias(discharge)TimesLevel(V)State1DrainBias(recharge)TimesLevel(V)VoltageontheDrainterminal(output)=IntheDigitalapplication,thetransistorbehaviorsmorelikesaCapacitor:1.DrainBias(CapacitorCharge):ThechargestorageontheDrainside.2.GateBias(CapacitorDischarge):ThestoragechargeflowfromDraintoSource3.DrainBiasagain(Gatefloating,CapacitorRecharge):Thechargestorageagain.3.How’sthetransistorworkin3.1How’stheclockrunninginthetransistorring?Thevideoshownthe49stagesNOTgateserieswhichconstructedtheringoscillator,IntheleftNOTgatediagram,iftheinputterminalbecomestate0,thePMOSwasturnON,andNMOSturnedoff,itmeansthattheVccflowintoOutputterminal,theOutputstatebecome1,andaccordingquantumphysics,thecurrentflowthechannelmeansthatelectron-holepairrecombination,andthelightemissionwillbedetectedbythecooledinfraredcamera.TheRingOscillatorwasthetooltomeasurethesystemclockandspeed.GNDVccOutputInputPMOSNMOSNOTGateState0OnOffState1State1OffOnState03.1How’stheclockrunningin3.2How’stheinformationbroadcastinginasystem?Generally,there’safewpeoplecouldunderstoodtheinformationbroadcastinginachip,especiallyonthesystemdebug,theproductengineerhardtodetectthedefectinsystemlevel.Theliquid-nitrogen-cooledinfraredCameracoulddetectthehotspotemissionwhichgeneratedbytheelectron-holepaircombination.Thedefectcouldbedetectedoncethesignalflowtothedefectnode,thesystemwillbeholdandhotspotfrozenonthedefectnode.3.2How’stheinformationbroaFIG.1.Thefirsttransistor.BrattainandBardeen'spnppoint-contactgermaniumtransistoroperatedasaspeechamplifierwithapowergainof18onDecember23,1947.(BellLabs,Lucent)GateOxidePolyTiSi2SpacerSourceDrainChannelLengthFIG.3.TheworldwidesmallesttransistorGatelength0.061um.(BellLabs,Lucent)FIG.2.TheUMCpostgeneration0.25umstandardtransistor(UMC)4.1TheTransistorrevolutionTheFirstTransistor1947Belllabs.TheUMC0.25umTransistor1999,UMCTheworldwideleadship2001Belllabs.LucentFIG.1.Thefirsttransistor.DeviceIntegrationandTechnologydriveDeviceIntegrationandTechnol1.2Fabflow1.Lithographyconceptandcycle4.TransistorLayer(Front-end)definition5.RoutingLayer(Back-end)definition3.Modulecompositionandintegration2.Moduledefinition1.2Fabflow1.LithographyconLithographyconcept-physicalcyclePhotoResistCoatingMask&DUVStepperExposurePHOTOPhotoResistDevelopmentPHOTOEtching(Wet/Dry)PhotoResistStrippingETCHFilmDepositionRawmaterialThinFilmThinFilm-PHOTO-ETCHPhysicallayerformationcycleFabFlowLithographyconcept-physicalLithographyconcept-ImplantcyclePhotoResistCoatingMask&DUVStepperExposurePHOTOPhotoResistDevelopmentPHOTOFurnacefilmgrowthRawmaterialDiffusionIonImplantPhotoResistStrippingDiffusionDiffusion-PHOTO-DiffusionImplantlayercycleFabFlowLithographyconcept-Implant1.2Fabflow1.Lithographyconceptandcycle4.TransistorLayer(Front-end)definition5.RoutingLayer(Back-end)definition3.Modulecompositionandintegration2.Moduledefinition1.2Fabflow1.LithographyconPhoto:Rawmaterial:Reticle,PhotoResistEquipment:I-Line(MUV),DUV,EUV(Stepper,SCANNER)Vendors:Nikon,ASML2.Moduledefinition-PHOTOThePHOTOconceptwasgeneralOpticslithographytoreproducethespecificpatterns.TodaywedeployedtheUVExcimerlaserforthelight,AccordingtoOpticsprinciple,generallythewavelengthofthelightshouldbelessthanonetenthofhalfpitch,soifthetechnologyshrink,theExposurelightsourceshouldbepushedintodeeplyUVzone.Photo:2.Moduledefinition-PThin-Film:Rawmaterial:MetalTarget,ChemicalEquipment:Sputter,RTP,CVD(AP,PE,LP,SP,MO),ScubberVendors:AMAT,Novellus,TEL,ASM…..2.Moduledefinition-ThinFilmIngeneralwecansplittheThin-Filmintotwofield,oneisPhysicsdominated(PVD),theotherisChemicaldominated(CVD)ThePVDmeansthatnochemicalreactionassistedintheprocess,justsimplyacceleratedAratomtobombardthetargettoevaporatethetargetanddepositonthewafer,suchlikesSputter.TheCVDmeansthatthechemicalreactiononthewaferorchambertodepositafilmonthesurfaceCVDPVDChemicalreactionThin-Film:2.ModuledefinitionEtchRawmaterial:Solvent,ReactivegasEquipment:DryEtch(RIE),WetBench(ChemicalStation)Vendors:AMAT,Novellus,TEL,ASM…..2.Moduledefinition-ETCHIngeneralwecancallthatRIEinthetermofDryetching,thedryetchingwhichdominatedbythePhysicalIonbombardandchemicalreactionwiththesurfacetoevaporatedthebyproducts.ReactiveionbombardEtch2.Moduledefinition-ETCDiffusionRawmaterial:ChemicalGas,IsotopegasEquipment:Implanter,FurnaceVendors:Eaton,Varian,KE,TEL...2.Moduledefinition-DiffusionInthediffusion,there’retwomethodstodeliverthedopantintothesiliconwafer:.Implant:Toacceleratetheisotopeanddirectbombardthewafertodeliverthedopantintorightdepthwithrightconcentration..Furnace:Tousethermaldiffusionpotentialtodeliverthedopantintorightdepthwithrightconcentration.Diffusion2.ModuledefinitionCMPRawmaterial:Slurry,polishpadEquipment:CMP(W-CMP,Oxide-CMP,Cu-CMP)Vendors:AMAT,COBAT,Strasbaugh2.Moduledefinition-CMPIngeneral,theCMPlikethepolisharts,butdeployedthechemical-mechanicalassistant.There’retwofactorsdominatedtheCMPprocess:.Firstischemicalhydrolysisslurrytohydrolyzethesurface,.Secondistheslurryabrasivetoremovethehydrolytewhichunderthemechanicaldominated.CMP2.Moduledefinition-CMP1.2Fabflow1.Lithographyconceptandcycle4.TransistorLayer(Front-end)definition5.RoutingLayer(Back-end)definition3.Moduleintegration2.Moduledefinition1.2Fabflow1.LithographyconProcessFlowLayer(Route)Module(Step)3.ModuleintegrationProcessFlowLayer(Route)Modul1.2Fabflow1.Lithographyconceptandcycle4.TransistorLayer(Front-end)definition5.RoutingLayer(Back-end)definition3.Modulecompositionandintegration2.Moduledefinition1.2Fabflow1.LithographyconBriefProcessFlow-FirstLayer(Diffusion)P-sub(Siliconwafer)SiN(Nitrid)Padoxide1.1.WaferStart1.2.PADOxidation
110A(stressbuffer)1.7.SiN(Nitrid)Deposition1.5KA1.8.DiffusionLithography:1.8.1P.R.coating1.8.2StepperExposure1.8.3DevelopmentPhotoResistorcoatingDiffusionmaskStepperExposureDiffusionP.R.P-sub(Siliconwafer)SiN(Nitrid)PadoxideBriefProcessFlow-FirstLayDiffusionP.R.P-sub(Siliconwafer)SiN(Nitrid)PadoxideSTISTIBriefProcessFlow-FirstLayer(Diffusion)cont’1.7.Trench(STI)PlasmaEtching1.7.1SiNEtching1.7.2SiliconEtching1.8.PhotoResistorremoveDiffusionP.R.SiN(Nitrid)PadBriefProcessFlow-FirstLayer(Diffusion)cont’1.7.APCVDSTIrefill1.7.1LinerOxideGrowth1.7.2APCVDOxidedeposition1.7.3STIFurnace1000CDensify1.8.STICMP1.9.SiNremoveDiffusionP.R.P-sub(Siliconwafer)SiN(Nitrid)PadoxideSTISTISTIBriefProcessFlow-FirstLayN-WELLMaskBriefProcessFlow-WellformationP.R.CoatingN-WELLP.R.StepperExposure2.1N-WELLFormation:2.1.1N-WELLPRcoating2.1.2N-WELLLithography2.1.3Development2.1.4N-WELLimplant2.1.5PRstripping2.2P-WELLFormation:2.2.1P-WELLPRcoating2.2.2P-WELLLithography2.2.3Development2.2.4P-WELLimplant2.2.5PRstrippingP-sub(Silicon)Sac.oxideSTIPWELL
N-WELLP.R.CoatingP-WELLMaskStepperExposureN-WELLImplant1.N-WELL-12.N-WELL-27.PMOS-VT8.PMOSanti-punchP-WELLImplant1.P-WELL-12.P-WELL-27.NMOS-VT8.NMOSanti-punchN-WELLMaskBriefProcessFlowBriefProcessFlow-GateOxideandPOLYPRcoatingP-sub(Silicon)NWELLPWELLGateOxideTGMaskStepperExposureGateOxide2UPOLYgrowth3GateOxideFormation:3.1ThickGateOxideGrowth3.2PRcoating3.3TGLithography3.4Development3.5RCA-AWetetching3.6PRstripping3.7ThinGateOxideGrowth4.PolyGrowth4.1undope.POLYgrowth4.2N+POLYPRcoating4.3N+POLYLithography4.4Development4.5N+POLYimplantandPRStripPRCoatingN+POLYMaskN+POLYPRN+POLYimplantStepperExposureBriefProcessFlow-GateOxidBriefProcessFlow-GateEngineeringP-subNWELLSTIPWELLPolyPRcoatingPolyMaskNLDDN-LDDN-PKTN-LDDN-PKTP-LDDPR
P-LDDP-PKTStepperExposureN-LDDImplantP-LDDimplant5PolyGateFormation:5.1Polyannealing5.2PRcoating5.3POLYLithography5.4Development5.5POLYGateetching5.6PRstripping5.7ThinOxideGrowth6.LDD(LightDopeDrain)implant6.1N-LDDLithography(ellipsis)6.2NLDD/N-PKTimplant6.3P-LDDLithography(ellipsis)6.4PLDD/P-PKTimplantBriefProcessFlow-GateEngiBriefProcessFlow-DrainEngineeringP-subNWELLSTIPWELLPolyPRcoatingPolyMaskNLDDN-LDDN-PKTN-LDDN-PKTP-LDDPR
P-LDDP-PKTN+PRN+N+P+PRP+P+ImplantN+implantGateOxideUMC.Fab8B.Generic0.25umlogicTi-SalicideProcessPolyTiSi2SpacerSourceDrainChannelLength7PolyGateFormation:7.1Polyannealing7.2PRcoating7.3POLYLithography7.4Development7.5POLYGateetching7.6PRstripping7.7ThinOxideGrowth8.LDD(LightDopeDrain)implant8.1N-LDDLithography(ellipsis)8.2NLDD/N-PKTimplant8.3P-LDDLithography(ellipsis)8.4PLDD/P-PKTimplantBriefProcessFlow-DrainEng1.2Fabflow1.Lithographyconceptandcycle4.TransistorLayer(Front-end)definition5.RoutingLayer(Back-end)definition3.Modulecompositionandintegration2.Moduledefinition1.2Fabflow1.LithographyconBriefProcessFlow-ILDPassivationP-subNWELLSTIPWELLPolyPRcoatingPolyMaskNLDDN-LDDN-PKTN-LDDN-PKTP-LDDPR
P-LDDP-PKTN+PRN+N+P+PRP+SABPSGUSG9.SalicideFormation:9.1PETEOS-500ACapOxidedep.9.2SAB(Salicide-Block)Lithography(ellipsis)9.3Ti/Cosputtering9.4SalicidationRTPC49annealing9.5SalicidationRTPC54annealing9.6TiresidualSemi-toolwetclean10.ILDPassivation10.1SiN300Adeposition(Moistureandsodiumblock)10.2AP-USGdeposition(GapfillingandB,Ptrap)10.3TEOS-BPSG-14Kdeposition(re-flowandplanarization)10.4ILDCMPBriefProcessFlow-ILDPassiP-subNWELLSTIPWELLPolyPRcoatingPolyMaskNLDDN-LDDN-PKTN-LDDN-PKTP-LDDPR
P-LDDP-PKTN+PRN+N+P+PRP+SABPSGUSGPRCoatingBriefProcessFlow-ContactPlug
ContactMaskPRcoatingContactPRMetal1DUVStepperExposure11.ContactPlugFormation:11.1ContactLithography11.2ContactPlasmaEtching11.3PRstrip11.4Barrierlayerdeposition(Ti+TiNforwellcontact)11.5RTPannealing11.6GlueLayerdeposition(Ti+TiNforplugadhesion)11.5WCVDfilling11.6WCMP11.7MetalLinerdeposition(Ti+TiNforMetaladhesion)11.8MetalSputterP-subNWELLSTIPWELLPolyPRcoatiBriefProcessFlow-Backendroutine(Aluminumline)P-subNWELLSTIPWELLPolyPRcoatingPolyMaskNLDDN-LDDN-PKTN-LDDN-PKTP-LDDPR
P-LDDP-PKTN+PRN+N+P+PRP+SABPSGUSGPRCoating
ContactMaskPRcoatingContactPRMetal1ContactplugPRCoatingMetal1maskMetal1PRMetal1HDP-1PEOXCapOxidePRCoatingMVIA1maskMVIA1PRMetal2
StepperExposureStepperExposure12.IMDdeposition12.1HDP-Oxidedeposition(Gapfilling)12.2PE-OxideDeposition(Planarizationanduniformity)12.3IMDCMP12.4CapPE-Oxide13.MVIAplugformation13.1MVIALithographycycle13.2MVIAEtchingandPRstrip13.3GlueLayerdeposition(Ti+TiNforplugadhesion)13.4WCVDfilling13.5WCMP13.6MetalLinerdeposition(Ti+TiNforMetaladhesion)13.7MetalSputterBriefProcessFlow-BackendrBriefProcessFlow-AluminumlineMVIA1MVIA2MVIA3MVIA4MVIA5PassivationM5-8KM6-8KM4-5KM3-5KM2-5KM1-5KUMC.Fab8B.Generic0.25umlogicTi-SalicideProcessBriefProcessFlow-AluminumP-subNWELLSTIPWELLPolyPRcoatingPolyMaskNLDDN-LDDN-PKTN-LDDN-PKTP-LDDPR
P-LDDP-PKTN+PRN+N+P+PRP+SABPSGUSGContactplugBriefProcessFlow-Backendroutine(CopperDualDamascene)PRCoatingMetal1maskMetal1Metal2MaskStepperExposure2MVIA1MaskMetal2StepperExposure1StepperExposure314.ILD/M1Damascene14.1PEOX-3.6Kdeposition14.2M1Lithography14.3M1TrenchEtching14.4M1CuElectroplate(ECP)14.5CuCMP15.M2/MVIA1DualDamascene15.1PEOX-9Kdeposition15.2M2Lithography15.3M2TrenchEtching15.4MVIA1Lithography15.5MVIA1PlugEtching15.6TrenchLinerdeposition15.7M2/MVIA1CuECP15.8CuCMPP-subNWELLSTIPWELLPolyPRcoatiBriefProcessFlow-CopperDualDamasceneBriefProcessFlow-CopperDuComplexityAdvantageThehigherconductivityofcoppersimplifiesinterconnectrouting.Thisreducesthenumberofinterconnectlevelsfrom12to6,whichremovesupwardsof200processstepsandhasadirectimpactondeviceyield.PowerAdvantageChipswithcopperinterconnectwilloperatewithapproximately30%lesspoweratagivenfrequencythanchipswithaluminuminterconnect.Thistechnologywillenabledeviceswithsignificantlyhigherperformanceformobileapplications.CostAdvantage
Thesemiconductorindustryhashistoricallyreducedthecostperfunctionby25%to30%peryear.Thereductionincriticalprocessstepswiththedual-Damascenecopperprocessreducestheoverallcostby30%perinterconnectlevel.SpeedAdvantage
At0.13μm,theinterconnectdelayforcopperandlow-kmaterialsisapproximatelyone-halfthatofaluminumandSiO2.Copperisaclearchoiceat0.13μmandsmallerbecauseitprovidesspeedenhancementwithnosacrificeofdevicereliability.
WhyCopper?ComplexityPowerAdvantageCostDiffusionbarrier[SiN]IMD-Via[lowkOx]TrenchEtchingStop[SiN]IMD-Trench[LowkOx]HardMask[SiN]ARCLithography[SiON]TrenchfirstVialastEtchingCuBarrier[TaN]CuseedCVDCuECPCuCMPBriefProcessFlow-CopperDualDamasceneDiffusionbarrierIMD-ViaTrencOutline
1.FabflowandTransistorworking2.ICmanufacturingchain3.Filedapplication4.TheTrendOutline1.FabflowandTransiwaferprocessingFront-endLot/waferBack-endwaferSorting(C/Ptesting)C/P:CircuitprobingWafer/diceSystemDesignSynthesis,simulation,andphysicallayoutDesignMaskToolingDesigningstageReticle.gdsdBSystem2.ICmanufacturingchain-Front-endIDMFablessTurnkeyFundrywaferprocessingFront-endLot/wDiesawingWirebondSolderbumpedPackageFinalTestBurn-inBack-endWafer/diceDice/chipchipchipchipFieldApplicationmodule2.ICmanufacturingchain-BackendAssemblyandTestingIDMSystemHouseDiesawingWirebondPackageFinaICDesignflowSimulationandTestbilitydesignLevelDesignVerification,
Physicallayoutgeneration,designoptimization,TestpatterngenerationLevelTapeout,DRC,MaskToolingandFabPilotLevelSystemDesignEntryandAnalysisSystemSynthesisandTechnologyOptimizationLevelICDesignflowSimulationandBackendAssemblyflowWaferlevelDielevelChiplevelBackendAssemblyflowWaferlevICmanufacturingchain-Capital,cycleandgrossmarginDesignProductionTimeToMarket=0.5~0.75year(withoutqualification)ICmanufacturingchain-CapiOutline
1.FabflowandTransistorworking2.ICmanufacturingchain3.Filedapplication4.TheTrendOutline1.FabflowandTransi3.Filedapplication3.FiledapplicationOutline
1.FabflowandTransistorworking2.ICmanufacturingchain3.Filedapplication4.TheTrendOutline1.FabflowandTransiDeviceIntegrationandTechnologydriveDeviceIntegrationandTechnolNotes: (1) BoxCenterrepresentsstartatPilotProductionSchedule. (2) BasedonlogicandeSRAMroadmap. (3) SIA=SemiconductorIndustryAssociationUMC/SIATechnologyRoadMap19992000200120020.18μm0.15μmCu0.18μm0.13μmCu20032004SIA0.10μmCu0.07μmCu0.18μm0.13μmCu0.10μmCuUMCNotes: (1) BoxCenterrepresenTechnologyRoadMapNote:(1)BoxCenterrepresentsPilotProductionSchedulebegins.1998199920002001eDRAM0.35μm0.25μm0.18μmLogiceSRAMMixed-Mode/RF0.15μm0.25μm0.18μmEmbeddedFlashMemory0.35μm0.25μm0.13μm0.18μmCu0.15μm0.25μm0.18μm0.13μmCu0.18μmTechnologyRoadMapNote:(1)BHardwareandprocesslimitationThetwomajorlimitations:oneisGatehighkdielectricmaterial,theotherisGatelinewidthlimitation,itmeansthatbeyondDUVlightsourceshouldbedeveloped,andthecooperatingshouldbedevelopedwhichcontainedReticle,PhotoResist,Stepper,InspectionandMetrologytools.HardwareandprocesslimitatioGenerationandApplicationmix
*BasedonCurrentDemand/ForecastProjectionsUMCtechnologymixASETproductmixThere’retwosignificanttrendinthesetwofigures:Thetechnologywillbedrivenintodeepsub-microntechnology,andthePCdidn’tdominatethethefieldapplicationmix.GenerationandApplicationmixMorganStanley
:SemigrowthfollowsGDPmovement/Articles/Article_Display.cfm?Section=Archives&Subsection=Display&ARTICLE_ID=90573Meandmyshadow:SemigrowthfollowsGDPmovementUpwardorDownward?MorganStanley:Semigrowthf演講完畢,謝謝觀看!演講完畢,謝謝觀看!IntroductiononFabflowandsemiconductorindustry--forITrelatedemployeeMorrisL.YehUMC.Fab8AB.PEI.Logic2IntroductiononFabflowandsOutline
1.FabflowandTransistorworking2.ICmanufacturingchain3.Filedapplication4.TheTrendOutline1.FabflowandTransiTheRoadmap
TheRoadmap1.1TransistorWorking1.What’stheTransistor?2.What’stheTransistorstructure?3.How’sthetransistorworking?4.TransistorandSystemrevolution3.1How’stheclockrunninginthetransistorring?3.2How’stheinformationbroadcastinginasystem?1.1TransistorWorking1.What’1.What’stheTransistor?TransistorWorkingInDigitalapplication,thetransistorplaytheroleofswitchinthesystemjustlikeamechanicalswitch,itmeansthatthekeycomponenttostoragethe0and1
State1State0ButwedeployedtheSolid-StateandQuantumphysicstorealizethesolid-stateswitch-Transistorinsiliconindustry,it’smoresizeshrinkage,highspeed,highperformanceandlowerenergyrequiredthanthepriorarts.State1State01.What’stheTransistor?Tran2.What’stheTransistorstructure?TransistorWorkingGateOxideUMC.Fab8B.Generic0.25umlogicTi-SalicideProcessPolyTiSi2SpacerSourceDrainChannelLengthLDDPOLYThetransistorincluded3terminalwhichlikestheswitch:1.PolyGateplaytheroleofcontrolorinputterminal,theDrainplaytheroleofoutputterminalandtheSourceplaytheroleofreferenceorground.2.What’stheTransistorstruc3.How’sthetransistorworking?TransistorWorkingState1DrainBias(charge)TimesLevel(V)State0GateBias(discharge)TimesLevel(V)State1DrainBias(recharge)TimesLevel(V)VoltageontheDrainterminal(output)=IntheDigitalapplication,thetransistorbehaviorsmorelikesaCapacitor:1.DrainBias(CapacitorCharge):ThechargestorageontheDrainside.2.GateBias(CapacitorDischarge):ThestoragechargeflowfromDraintoSource3.DrainBiasagain(Gatefloating,CapacitorRecharge):Thechargestorageagain.3.How’sthetransistorworkin3.1How’stheclockrunninginthetransistorring?Thevideoshownthe49stagesNOTgateserieswhichconstructedtheringoscillator,IntheleftNOTgatediagram,iftheinputterminalbecomestate0,thePMOSwasturnON,andNMOSturnedoff,itmeansthattheVccflowintoOutputterminal,theOutputstatebecome1,andaccordingquantumphysics,thecurrentflowthechannelmeansthatelectron-holepairrecombination,andthelightemissionwillbedetectedbythecooledinfraredcamera.TheRingOscillatorwasthetooltomeasurethesystemclockandspeed.GNDVccOutputInputPMOSNMOSNOTGateState0OnOffState1State1OffOnState03.1How’stheclockrunningin3.2How’stheinformationbroadcastinginasystem?Generally,there’safewpeoplecouldunderstoodtheinformationbroadcastinginachip,especiallyonthesystemdebug,theproductengineerhardtodetectthedefectinsystemlevel.Theliquid-nitrogen-cooledinfraredCameracoulddetectthehotspotemissionwhichgeneratedbytheelectron-holepaircombination.Thedefectcouldbedetectedoncethesignalflowtothedefectnode,thesystemwillbeholdandhotspotfrozenonthedefectnode.3.2How’stheinformationbroaFIG.1.Thefirsttransistor.BrattainandBardeen'spnppoint-contactgermaniumtransistoroperatedasaspeechamplifierwithapowergainof18onDecember23,1947.(BellLabs,Lucent)GateOxidePolyTiSi2SpacerSourceDrainChannelLengthFIG.3.TheworldwidesmallesttransistorGatelength0.061um.(BellLabs,Lucent)FIG.2.TheUMCpostgeneration0.25umstandardtransistor(UMC)4.1TheTransistorrevolutionTheFirstTransistor1947Belllabs.TheUMC0.25umTransistor1999,UMCTheworldwideleadship2001Belllabs.LucentFIG.1.Thefirsttransistor.DeviceIntegrationandTechnologydriveDeviceIntegrationandTechnol1.2Fabflow1.Lithographyconceptandcycle4.TransistorLayer(Front-end)definition5.RoutingLayer(Back-end)definition3.Modulecompositionandintegration2.Moduledefinition1.2Fabflow1.LithographyconLithographyconcept-physicalcyclePhotoResistCoatingMask&DUVStepperExposurePHOTOPhotoResistDevelopmentPHOTOEtching(Wet/Dry)PhotoResistStrippingETCHFilmDepositionRawmaterialThinFilmThinFilm-PHOTO-ETCHPhysicallayerformationcycleFabFlowLithographyconcept-physicalLithographyconcept-ImplantcyclePhotoResistCoatingMask&DUVStepperExposurePHOTOPhotoResistDevelopmentPHOTOFurnacefilmgrowthRawmaterialDiffusionIonImplantPhotoResistStrippingDiffusionDiffusion-PHOTO-DiffusionImplantlayercycleFabFlowLithographyconcept-Implant1.2Fabflow1.Lithographyconceptandcycle4.TransistorLayer(Front-end)definition5.RoutingLayer(Back-end)definition3.Modulecompositionandintegration2.Moduledefinition1.2Fabflow1.LithographyconPhoto:Rawmaterial:Reticle,PhotoResistEquipment:I-Line(MUV),DUV,EUV(Stepper,SCANNER)Vendors:Nikon,ASML2.Moduledefinition-PHOTOThePHOTOconceptwasgeneralOpticslithographytoreproducethespecificpatterns.TodaywedeployedtheUVExcimerlaserforthelight,AccordingtoOpticsprinciple,generallythewavelengthofthelightshouldbelessthanonetenthofhalfpitch,soifthetechnologyshrink,theExposurelightsourceshouldbepushedintodeeplyUVzone.Photo:2.Moduledefinition-PThin-Film:Rawmaterial:MetalTarget,ChemicalEquipment:Sputter,RTP,CVD(AP,PE,LP,SP,MO),ScubberVendors:AMAT,Novellus,TEL,ASM…..2.Moduledefinition-ThinFilmIngeneralwecansplittheThin-Filmintotwofield,oneisPhysicsdominated(PVD),theotherisChemicaldominated(CVD)ThePVDmeansthatnochemicalreactionassistedintheprocess,justsimplyacceleratedAratomtobombardthetargettoevaporatethetargetanddepositonthewafer,suchlikesSputter.TheCVDmeansthatthechemicalreactiononthewaferorchambertodepositafilmonthesurfaceCVDPVDChemicalreactionThin-Film:2.ModuledefinitionEtchRawmaterial:Solvent,ReactivegasEquipment:DryEtch(RIE),WetBench(ChemicalStation)Vendors:AMAT,Novellus,TEL,ASM…..2.Moduledefinition-ETCHIngeneralwecancallthatRIEinthetermofDryetching,thedryetchingwhichdominatedbythePhysicalIonbombardandchemicalreactionwiththesurfacetoevaporatedthebyproducts.ReactiveionbombardEtch2.Moduledefinition-ETCDiffusionRawmaterial:ChemicalGas,IsotopegasEquipment:Implanter,FurnaceVendors:Eaton,Varian,KE,TEL...2.Moduledefinition-DiffusionInthediffusion,there’retwomethodstodeliverthedopantintothesiliconwafer:.Implant:Toacceleratetheisotopeanddirectbombardthewafertodeliverthedopantintorightdepthwithrightconcentration..Furnace:Tousethermaldiffusionpotentialtodeliverthedopantintorightdepthwithrightconcentration.Diffusion2.ModuledefinitionCMPRawmaterial:Slurry,polishpadEquipment:CMP(W-CMP,Oxide-CMP,Cu-CMP)Vendors:AMAT,COBAT,Strasbaugh2.Moduledefinition-CMPIngeneral,theCMPlikethepolisharts,butdeployedthechemical-mechanicalassistant.There’retwofactorsdominate
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)業(yè)科學(xué)與農(nóng)村文化創(chuàng)新視頻考核試卷
- 托兒所服務(wù)的品牌建設(shè)和品牌推廣考核試卷
- 倉(cāng)儲(chǔ)物流業(yè)財(cái)務(wù)戰(zhàn)略協(xié)議
- 臨時(shí)教育培訓(xùn)基地租賃合同
- 漁港通信管溝施工合同
- 展覽館施工零星合同
- 跨境電商軟件投標(biāo)技術(shù)要求模板
- 橄欖球俱樂部合同球員管理
- 珠寶首飾招標(biāo)質(zhì)疑快速響應(yīng)
- 適用于房產(chǎn)抵押的合同模板
- 國(guó)開作業(yè)《機(jī)電控制與可編程序控制器技術(shù)》專題報(bào)告(占20%)-2021-5參考535
- 樁基及基坑質(zhì)量通病防治講義PPT(105頁(yè))
- 精品堆垛機(jī)安裝指導(dǎo)書
- 水的流動(dòng)沸騰課件
- 前臺(tái)月度績(jī)效考核表(KPI)
- 雞的飼養(yǎng)管理-優(yōu)質(zhì)課件
- 新生兒科護(hù)理技術(shù)操作規(guī)范
- 德育課(共19張PPT)
- 歷史幽憤的現(xiàn)代回響——《記念劉和珍君》課堂實(shí)錄
- 英語(yǔ)單詞分類大全-20170913
- 化學(xué)微生物學(xué)第7章 微生物轉(zhuǎn)化
評(píng)論
0/150
提交評(píng)論