版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
StrongandDuctileNon-equiatomicHigh-EntropyAlloys:
Design,Processing,Microstructure,andMechanicalPropertiesChangRuobinCONTENTS1.Briefintroductionofhighentropyalloy2.Compositionaldesignofstrongandductilenon-equiatomichigh-entropyalloys3.Processingofstrongandductilebulknon-equiatomichigh-entropyalloys4.Microstructureandmechanicalpropertiesofnon-equiatomichigh-entropyalloys5.SummaryandoutlookBriefintroductiontotheHistoryofEngineeringMaterialsConventionalalloydesignoverthepastcenturieshasbeenconstrainedbytheconceptofoneortwoprevalentbaseelements.Asabreakthroughofthisrestriction,theconceptofhigh-entropyalloys(HEAs)containingmultipleprincipalelementshasdrawngreatattentionoverthelast13yearsduetothenumerousopportunitiesforinvestigationsinthehugeunexploredcompositionalspaceofmulticom-ponentalloys.Murty,Yeh,Ranganathan,Butterworth-Heinemann,2014.Fig.1.BriefintroductiontotheHistoryofEngineeringMaterialsFig.2.(1)Highentropyeffect(2)Schematicdiagramshowingthecompositionalspaceofnon-equiatomichigh-entropyalloys(HEAs),whichissignificantlylargerthanthatofconventionalalloysorequiatomicHEAs.Themoreelementsare,thehighertheentropyvalue.AsillustratedschematicallyinFig.2,comparedwithconventionalalloyswithoneortwoprincipalelementsplusminoralloyingcomponents,aswellasequiatomicHEAswithequimolarratiosofallalloyelements,non-equiatomicHEAsgreatlyexpandthecompositionalspacethatcanbeprobed.Pradeep,etal.MSEA,648(2015)183-192.2.Compositionaldesignofstrongandductilenon-equiatomichigh-entropyalloysFig.3.DifferencesintheGibbsfreeenergiesof(metastable)equiatomic,binaryfccsolidsolutionsandtheirrespectivethermodynamicequilibriumstates.(a)ThebaseCoCrFeMnNialloyat1123and1273K;(b–e)changesduetothesubstitutionof(b)CrwithMoorV,(c)FewithV,(d)CowithTiand(e)NiwithCu.Thusasignificantrelaxationofthephasestabilitytrendsseeninbinarysystemsduetopossibleentropyincreasesresultingfromanincreaseinthenumberofalloyingelementsisnotobservedinhigher-ordersystems.Formationofsingle-phasesolidsolutionsinHEAsshowsweakdependenceonmaximizationoftheconfigurationalentropythroughequiatomicratiosofelements.F.Otto,etal.ActaMaterialia61(2013)2628–2638Fig.4.Theconfigurationalentropy(Sc)ofthenon-equiatomiccompositionalHEAs(FexMn62-xNi30Co6Cr2)asafunctionofx(atomicfractionofFe).ThehorizontaldashedlineistheScoftheHEAattheequiatomiccomposition(Fe20Mn20Ni20Co20Cr20).ScisinkB(Boltzmannconstant)peratom.Thermodynamicinvestigationsofnon-equiatomic
HEAsshowedthattheconfigurationalentropycurveofthesealloysisratherflat,indicatingthatawiderangeofcompositionsalongsidetheequiatomicconfigurationassumesimilarentropyvalues.Thenon-equiatomicHEAconceptprovidespossibilitiesfortheunificationofvariousstrengtheningandtougheningmechanisms,enablingsignificantimprovementofstrain-hardeningcapacityandstrength
ductilitycombinations.D.Ma,etal.ActaMater.98,288(2015).
Athighstrains(>10%truestrain),deformationtwinningisactivatedasanadditionalmechanism,causingatransitioninthestrainhardeningratesimilarasinsomeTWIPsteels.Itwasevenfoundthatmaximumentropyisnotthemostessentialparameterwhendesigningmulticomponentalloyswithsuperiorproperties.Inthiscontext,non-equiatomicHEAswithsingle-structurehaverecentlybeenproposedtoexploretheflexibilityofHEAdesignandovercomethelimitationsoftheoriginalHEAdesignconcept.SinglephaseFCCY.Deng,etal.ActaMaterialia94(2015)124–133Fig.5Compositionaldesignofstrongandductilenon-equiatomichigh-entropyalloys
Thelimitedhardeningmechanismsavailableinsingle-phaseHEAs,i.e.,primarilydislocationinteractionandsolid-solutionstrengthening,restricttheirstrain-hardeningcapacityaswellastheattainablestrength–ductilitycombination.However,thefactthathighductilityofstrongmetallicalloyscanbeobtainedwhendifferentdeformationmechanismsareactivatedsequentiallyduringongoingloading,suchastheadditionalactivationoftwinningandphasetransformationathigherdeformationsknownfromtwinning-inducedplasticity(TWIP)andTRIPsteels.TheTWIPandTRIPphenomenaaremainlydeterminedbythevalueofthestackingfaultenergy,i.e.,theenergycarriedbytheinterruptionofthenormalstackingsequence.TheintrinsicstackingfaultenergyγIofFCC-structuredalloyscanbeexpressedas:Fig.6.Freeenergydifferences(?G)betweentheFCCandHCPstructuresoftypicalalloysystemsat300KderivedbythermodynamiccalculationsusingtheCalphadapproach(Thermo-Calc,databaseTCFE7):(a)quaternaryFe80-xMnxCo10Cr10(x=45at.%,40at.%,35at.%,and30at.%)and(b)quinaryCo20Cr20Fe40-yMn20Niy(y=20at.%,15at.%,10,5at.%,and0at.%).ThisindicatesthattheTRIP-DPeffectintroducedintotheformerquaternaryalloycanalsoberealizedinquinaryalloyswithhighermixingentropyvalue.FreeenergydifferencesbetweentheFCCandHCPstructuresoftwotypicalalloysystemsZHIMINGLI,DIERKRAABE,JOM,Vol.69,No.11,2017Whendesigningthecompositionofstrongandductilenon-equiatomicdual-ormultiphaseHEAs,itisalsoessentialtonotethatthemultipleprincipalelementsselectedshouldbedistributeduniformlyinthemicrostructure,oratleastpartitioninsuchawaythatallofthecoexistingphaseshaveahighsolid-solutioneffectandhighmixingentropy.Furthermore,minorinterstitialelementfractionscanalsobeintroducedintostrongandductilenon-equiatomicdual-ormultiphaseHEAstofurtherimprovetheirmechanicalproperties.Z.Li,etal.Sci.Rep.7,40704(2017).Thus-preparedinterstitialHEA(referredtoasiHEA)wasindeedcharacterizedbyacombinationofvariousstrengtheningmechanismsFig.73.Processingofstrongandductilebulknon-equiatomichigh-entropyalloysFig.8.Processingroutesandrelatedparametersaswellasresultantcompositionalhomogeneitystatesfor3dtransition-metalhigh-entropyalloys.Processingofstrongandductilebulknon-equiatomichigh-entropyalloysThedistributionofthemulti-maincomponentintheblockHEAsisnotuniformbythehomogenizationtreatment.SincehomogenizedHEAsheetsexhibithugegrainsize(>30lm),cold-rollingandannealingprocessesaregenerallyrequiredtorefinethegrainstoachievebettermechanicalproperties.Annealingwasconductedtoobtainfullrecrystallizationofthemicrostructureandtocontrolthegrainsizes.Fig.9.VariationsinFCCgrainsizeandHCPphasefractionindual-phaseFe50Mn30Co10Cr10alloywithincreasingannealingtimeat900°C.Annealingtimeof0minreferstothecold-rolledstateofthesampleswithoutannealing.Interestingly,forthedesignedTRIP-assisteddual-phaseHEAs,annealingtreatmentscanbeusednotonlytocontrolthegrainsize,butalsotomodifythephasefractionsinthemicrostructure.ThevariationsintheFCCgrainsizeandHCPphasefractionofthequaternarydual-phaseZ.Li,etal.ActaMater.131,323(2017).4.Microstructureandmechanicalpropertiesofnon-equiatomichigh-entropyalloysFig.10.TypicalmicrostructuresofFe50Mn30Co10Cr10andFe49.5Mn30Co10Cr10C0.5alloysafterrecrystallizationannealingfor3min:(a1)EBSDphasemapand(a2)ECCimageofdual-phaseFe50Mn30Co10Cr10alloy;(b1)EBSDphasemap,(b2)ECCimage,(b3)APTtipreconstruction,(b4)elementalprofilesacrossaninterfaceofmatrixandcarbide,(b5)TEMbright-fieldimage,and(b6)selected-areadiffractionpatternofinterstitialFe49.5Mn30Co10Cr10C0.5alloy.Diffractionspotsmarkedbyredcirclesin(b6)showtheFCCstructureoftheM23C6carbides(Colorfigureonline).TheslightincreaseofstackingfaultenergyandcorrespondinglyhigherFCCphasestabilitywithadditionofC.ThefractionofHCPephaseintheiHEAissignificantlyreducedafterannealing(Fig.10b1)comparedwiththereferencealloywithoutC(Fig.10a1).Z.Li,etal.ActaMater.131,323(2017).Fig.11.Overviewofultimatetensilestrengthandtotalengineeringelongationobtainedforvariousnon-equiatomichigh-entropyalloys.Forcomparison,dataoftheequiatomicCo20Cr20Fe20Mn20Ni20alloy(#2)arealsoshown.Allalloysproducedin-houseusingsimilarprocessingroutesshowninFig.6forfullcontroloftheexperimentalsetup.Allthesedatastemfromuniaxialtensiletestsconductedonbulksampleswithidenticaldimensionsatroomtemperatureatstrainrateof1x10-3s-1.Withadditionofinterstitialelementcarbonintothedual-phasemicrostructure,thegrain-refinedFe49.5Mn30Co10Cr10C0.5alloy(#8)showsfurtherincreasedultimatestrengthuptonearly1GPawithtotalelongationof~60%.Thesesuperiormechanicalpropertiesareattributedtothejointactivityofvariousstrengtheningmechanismsincludinginter-stitialandsubstitutionalsolidsolution,TWIP,TRIP,nanoprecipitates,dislocationinteractions,stackingfaults,andgrainboundaries.Fig.12.Overviewofdeformationmechanismsinvariousmulticomponenthigh-entropyalloysshowingthattuningdeformationmechanismsiskeytodevelopmentofstrongandductilenon-equiatomichigh-entropyalloys(NE-HEAs).ThestrengthandductilityofthesealloysaregiveninFig.11.SS:solidsolution.Tofurtherclarifythemechanismsresponsiblefortheabovemicrostructure–propertyrelations,Fig.12providesanoverviewofthevariousdeformationmechanismsindifferentmulticomponentHEAspresentedinFig.11.Thisclearlyshowsthattuningdeformationmechanismsviacompositionadjustmentiskeytothedesignofstrongandductilenon-equiatomicHEAs.5.SummaryandoutlookThestrengthandductilityofthevariousnon-equiatomicHEAsatlowandelevatedtemperaturesarestillunknown,andnew(non-equiatomic)HEAswithexcellentstrength–ductilitycombinationsatlowandelevatedtemperaturescanbedesignedandstudied.Forthewidelystudiedtransitio
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年滬科版選擇性必修三物理下冊階段測試試卷
- 二零二五年度建筑廢棄物資源化利用與木模板木方采購合同3篇
- 二零二五年度新能源汽車推廣應用借款合同參考格式4篇
- 2025年度橋梁路面混凝土施工勞務合同范本4篇
- 2025年度農(nóng)用拖拉機租賃與農(nóng)田作業(yè)合同3篇
- 2025年度幕墻施工勞務分包合同施工質(zhì)量監(jiān)督與驗收范本4篇
- 二零二五年度苗木新品種研發(fā)與推廣合作合同3篇
- 2025年度旅游地產(chǎn)開發(fā)貸款擔保合同4篇
- 二零二五年度廠房租賃與智慧城市建設合作合同范本3篇
- 護士長合同范本(2篇)
- GB/T 16288-2024塑料制品的標志
- 麻風病防治知識課件
- 干部職級晉升積分制管理辦法
- TSG ZF003-2011《爆破片裝置安全技術監(jiān)察規(guī)程》
- 護理服務在產(chǎn)科中的應用課件
- 2024年代理記賬工作總結6篇
- 電氣工程預算實例:清單與計價樣本
- VOC廢氣治理工程中電化學氧化技術的研究與應用
- 煤礦機電設備培訓課件
- 高考寫作指導議論文標準語段寫作課件32張
- 2021年普通高等學校招生全國英語統(tǒng)一考試模擬演練八省聯(lián)考解析
評論
0/150
提交評論