2022年上海市黃浦區(qū)盧灣中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第1頁
2022年上海市黃浦區(qū)盧灣中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第2頁
2022年上海市黃浦區(qū)盧灣中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第3頁
2022年上海市黃浦區(qū)盧灣中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第4頁
2022年上海市黃浦區(qū)盧灣中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列說法正確的是()A.不可能事件發(fā)生的概率為;B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生;D.投擲一枚質(zhì)地均勻的硬幣次,正面朝上的次數(shù)一定是次2.如圖,是的直徑,,是圓周上的點,且,則圖中陰影部分的面積為()A. B. C. D.3.點A(1,y1)、B(3,y2)是反比例函數(shù)y=圖象上的兩點,則y1、y2的大小關(guān)系是()A.y1>y2 B.y1=y(tǒng)2 C.y1<y2 D.不能確定4.如圖所示,二次函數(shù)的圖像與軸的一個交點坐標為,則關(guān)于的一元二次方程的解為()A. B. C. D.5.已知點A(﹣1,﹣1),點B(1,1),若拋物線y=x2﹣ax+a+1與線段AB有兩個不同的交點(包含線段AB端點),則實數(shù)a的取值范圍是()A.≤a<﹣1 B.≤a≤﹣1 C.<a<﹣1 D.<a≤﹣16.參加一次聚會的每兩人都握了一次手,所有人共握手10

次,若共有

x

人參加聚會,則根據(jù)題意,可列方程()A. B. C. D.7.拋物線y=(x﹣2)2+3的頂點坐標是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)8.已知,則的值是()A. B. C. D.9.如圖,AB是⊙O的弦,OD⊥AB于D交⊙O于E,則下列說法錯誤的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE10.下面是一位美術(shù)愛好者利用網(wǎng)格圖設(shè)計的幾個英文字母的圖形,你認為其中是中心對稱圖形,但不是軸對稱圖形的是A. B. C. D.11.如圖,在正方形中,是的中點,是上一點,,則下列結(jié)論正確的有()①②③④∽A.1個 B.2個 C.3個 D.4個12.拋物線的對稱軸為A. B. C. D.二、填空題(每題4分,共24分)13.如圖,點O為正六邊形ABCDEF的中心,點M為AF中點,以點O為圓心,以O(shè)M的長為半徑畫弧得到扇形MON,點N在BC上;以點E為圓心,以DE的長為半徑畫弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____.14.如圖所示的弧三角形,又叫萊洛三角形,是機械學(xué)家萊洛首先進行研究的.弧三角形是這樣畫的:先畫一個正三角,然后分別以三個頂點為圓心,邊長長為半徑畫弧得到的三角形.若中間正三角形的邊長是10,則這個萊洛三角形的周長是____________.15.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,若⊙O的半徑是4,sinB=,則線段AC的長為.16.如圖,的弦,半徑交于點,是的中點,且,則的長為__________.17.如圖,一艘輪船從位于燈塔的北偏東60°方向,距離燈塔60海里的小島出發(fā),沿正南方向航行一段時間后,到達位于燈塔的南偏東45°方向上的處,這時輪船與小島的距離是__________海里.18.已知方程x2+mx﹣3=0的一個根是1,則它的另一個根是_____.三、解答題(共78分)19.(8分)如圖1.正方形的邊長為,點在上,且.如圖2.將線段繞點逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為,并以為邊作正方形,連接試問隨著線段的旋轉(zhuǎn),與有怎樣的數(shù)量關(guān)系?說明理由;如圖3,在的條件下,若點恰好落在線段上,求點走過的路徑長(保留).20.(8分)已知:點和是一次函數(shù)與反比例函數(shù)圖象的連個不同交點,點關(guān)于軸的對稱點為,直線以及分別與軸交于點和.(1)求反比例函數(shù)的表達式;(2)若,求的取值范圍.21.(8分)已知如圖AB∥EF∥CD,(1)△CFG∽△CBA嗎?為什么?(2)求的值.22.(10分)已知關(guān)于的一元二次方程.(1)求證:對于任意實數(shù),方程總有兩個不相等的實數(shù)根;(2)若方程的一個根是1,求的值及方程的另一個根.23.(10分)東坡商貿(mào)公司購進某種水果成本為20元/,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(元/)與時間(天)之間的函數(shù)關(guān)系式,為整數(shù),且其日銷售量()與時間(天)的關(guān)系如下表:時間(天)1361020…日銷售量()11811410810080…(1)已知與之間的變化符合一次函數(shù)關(guān)系,試求在第30天的日銷售量;(2)哪一天的銷售利潤最大?最大日銷售利潤為多少?24.(10分)已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.(1)求證:DE是⊙O的切線.(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.25.(12分)⊙O為△ABC的外接圓,請僅用無刻度的直尺,根據(jù)下列條件分別在圖1,圖2中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法).(1)如圖1,AC=BC;(2)如圖2,直線l與⊙O相切于點P,且l∥BC.26.如圖,已知正方形ABCD,點E為AB上的一點,EF⊥AB,交BD于點F.(1)如圖1,直按寫出的值;(2)將△EBF繞點B順時針旋轉(zhuǎn)到如圖2所示的位置,連接AE、DF,猜想DF與AE的數(shù)量關(guān)系,并證明你的結(jié)論;(3)如圖3,當BE=BA時,其他條件不變,△EBF繞點B順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<360°),當α為何值時,EA=ED?在圖3或備用圖中畫出圖形,并直接寫出此時α=.

參考答案一、選擇題(每題4分,共48分)1、A【分析】由題意根據(jù)不可能事件是指在任何條件下不會發(fā)生,隨機事件就是可能發(fā)生,也可能不發(fā)生的事件,發(fā)生的機會大于0并且小于1,進行判斷.【詳解】解:A、不可能事件發(fā)生的概率為0,故本選項正確;B、隨機事件發(fā)生的概率P為0<P<1,故本選項錯誤;C、概率很小的事件,不是不發(fā)生,而是發(fā)生的機會少,故本選項錯誤;D、投擲一枚質(zhì)地均勻的硬幣1000次,是隨機事件,正面朝上的次數(shù)不確定是多少次,故本選項錯誤;故選:A.【點睛】本題考查不可能事件、隨機事件的概念.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、D【分析】連接OC,過點C作CE⊥OB于點E,根據(jù)圓周角定理得出,則有是等邊三角形,然后利用求解即可.【詳解】連接OC,過點C作CE⊥OB于點E∴是等邊三角形故選:D.【點睛】本題主要考查圓周角定理及扇形的面積公式,掌握圓周角定理及扇形的面積公式是解題的關(guān)鍵.3、A【解析】∵反比例函數(shù)y=中的9>0,∴經(jīng)過第一、三象限,且在每一象限內(nèi)y隨x的增大而減小,又∵A(1,y?)、B(3,y?)都位于第一象限,且1<3,∴y?>y?,故選A.4、B【分析】先確定拋物線的對稱軸,然后根據(jù)拋物線的對稱性確定圖象與x軸的另一個交點,再根據(jù)二次函數(shù)與一元二次方程的關(guān)系解答即可.【詳解】解:∵二次函數(shù)的對稱軸是直線,圖象與軸的一個交點坐標為,∴圖象與軸的另一個交點坐標為(﹣1,0),∴一元二次方程的解為.故選:B.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì)以及二次函數(shù)與一元二次方程的關(guān)系,屬于??碱}型,熟練掌握基本知識是解題的關(guān)鍵.5、A【分析】根據(jù)題意,先將一次函數(shù)解析式和二次函數(shù)解析式聯(lián)立方程,求出使得這個方程有兩個不同的實數(shù)根時a的取值范圍,然后再求得拋物y=x2﹣ax+a+1經(jīng)過A點時的a的值,即可求得a的取值范圍.【詳解】解:∵點A(﹣1,﹣1),點B(1,1),∴直線AB為y=x,令x=x2﹣ax+a+1,則x2﹣(a+1)x+a+1=0,若直線y=x與拋物線x2﹣ax+a+1有兩個不同的交點,則△=(a+1)2﹣4(a+1)>0,解得,a>3(舍去)或a<﹣1,把點A(﹣1,﹣1)代入y=x2﹣ax+a+1解得a=﹣,由上可得﹣≤a<﹣1,故選:A.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系、二次函數(shù)的性質(zhì)、一次函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.6、C【分析】如果人參加了這次聚會,則每個人需握手次,人共需握手次;而每兩個人都握了一次手,因此一共握手次.【詳解】設(shè)人參加了這次聚會,則每個人需握手次,依題意,可列方程.故選C.【點睛】本題主要考查一元二次方程的應(yīng)用.7、A【分析】根據(jù)拋物線的頂點式可直接得到頂點坐標.【詳解】解:y=(x﹣2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標特點可知,頂點坐標為(2,3).故選:A.【點睛】本題考查了二次函數(shù)的頂點式與頂點坐標,頂點式y(tǒng)=(x-h)2+k,頂點坐標為(h,k),對稱軸為直線x=h,難度不大.8、A【解析】設(shè)a=k,b=2k,則.故選A.9、D【解析】由垂徑定理和圓周角定理可證,AD=BD,AD=BD,AE=BE,而點D不一定是OE的中點,故D錯誤.【詳解】∵OD⊥AB,∴由垂徑定理知,點D是AB的中點,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分線,有∠AOE=12∠AOB,由圓周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正確,而點D不一定是OE的中點,故錯誤.故選D.【點睛】本題主要考查圓周角定理和垂徑定理,熟練掌握這兩個定理是解答此題的關(guān)鍵.10、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形;

B、不是軸對稱圖形,是中心對稱圖形;

C、是軸對稱圖形,也是中心對稱圖形;

D、不是軸對稱圖形,也不是中心對稱圖形.

故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.11、B【分析】由題中條件可得△CEF∽△BAE,進而得出對應(yīng)線段成比例,進而又可得出△ABE∽△AEF,即可得出題中結(jié)論.【詳解】∵四邊形ABCD是正方形,

∴∠B=∠C=90°,AB=BC=CD,

∵AE⊥EF,

∴∠AEF=∠B=90°,

∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,

∴∠BAE=∠CEF,

∴△BAE∽△CEF,∴∵是的中點,∴BE=CE∴CE2=AB?CF,∴②正確;

∵BE=CE=BC,∴CF=BE=CD,故③錯誤;∵∴∠BAE≠30°,故①錯誤;設(shè)CF=a,則BE=CE=2a,AB=CD=AD=4a,DF=3a,

∴AE=2a,EF=a,AF=5a,∴∴∴△ABE∽△AEF,故④正確.

∴②與④正確.

∴正確結(jié)論的個數(shù)有2個.

故選:B.【點睛】此題考查了相似三角形的判定與性質(zhì),以及正方形的性質(zhì).題目綜合性較強,注意數(shù)形結(jié)合思想的應(yīng)用.12、B【分析】根據(jù)頂點式的坐標特點,直接寫出對稱軸即可.【詳解】解∵:拋物線y=-x2+2是頂點式,

∴對稱軸是直線x=0,即為y軸.

故選:B.【點睛】此題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=a(x-h)2+k的頂點坐標為(h,k),對稱軸為直線x=h.二、填空題(每題4分,共24分)13、【解析】分析:根據(jù)題意正六邊形中心角為120°且其內(nèi)角為120°.求出兩個扇形圓心角,表示出扇形半徑即可.詳解:連OA由已知,M為AF中點,則OM⊥AF∵六邊形ABCDEF為正六邊形∴∠AOM=30°設(shè)AM=a∴AB=AO=2a,OM=∵正六邊形中心角為60°∴∠MON=120°∴扇形MON的弧長為:則r1=a同理:扇形DEF的弧長為:則r2=r1:r2=故答案為點睛:本題考查了正六邊形的性質(zhì)和扇形面積及圓錐計算.解答時注意表示出兩個扇形的半徑.14、10π【分析】根據(jù)正三角形的有關(guān)計算求出弧的半徑和圓心角,根據(jù)弧長的計算公式求解即可.【詳解】解:如圖:

∵△ABC是正三角形,

∴∠BAC=60°,

∴的長為:,

∴萊洛三角形的周長=.故答案為:.【點睛】本題考查的是正多邊形和圓的知識,理解弧三角形的概念、掌握正多邊形的中心角的求法是解題的關(guān)鍵.15、1.【分析】連結(jié)CD如圖,根據(jù)圓周角定理得到∠ACD=90°,∠D=∠B,則sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可計算出AC的長.【詳解】解:連結(jié)CD,如圖,∵AD是⊙O的直徑,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=1.故答案為1.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了解直角三角形.16、2【分析】連接OA,先根據(jù)垂徑定理求出AO的長,再設(shè)ON=OA,則MN=ON-OM即可得到答案.【詳解】解:如圖所示,連接OA,∵半徑交于點,是的中點,∴AM=BM==4,∠AMO=90°,∴在Rt△AMO中OA==5.∵ON=OA,∴MN=ON-OM=5-3=2.故答案為2.【點睛】本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.17、(30+30)【分析】過點C作CD⊥AB,則在Rt△ACD中易得AD的長,再在Rt△BCD中求出BD,相加可得AB的長.【詳解】解:過C作CD⊥AB于D點,由題意可得,

∠ACD=30°,∠BCD=45°,AC=1.

在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC?cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,

∴CD=BD=30,∴AB=AD+BD=30+30.答:此時輪船所在的B處與小島A的距離是(30+30)海里.

故答案為:(30+30).【點睛】此題主要考查了解直角三角形的應(yīng)用-方向角問題,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.18、-1【解析】設(shè)另一根為,則1·=-1,解得,=-1,故答案為-1.三、解答題(共78分)19、(1);(2)【分析】(1)利用已知條件得出,從而可得出結(jié)論(2)連接,交于連接,可得出CG=AG,接著可證明是等邊三角形.,再找出,最后利用弧長公式求解即可.【詳解】解:.理由如下:由題意,可知.又,..如圖,連接,交于連接.四邊形是正方形,與互相垂直平分.點在線段上,垂直平分..由題意,知,.又正方形的邊長為,.,即是等邊三角形...則點走過的路徑長就是以為圓心,長為半徑,且圓心角為105°的一段弧的弧長.即所以點走過的路徑長是.【點睛】本題是一道利用旋轉(zhuǎn)的性質(zhì)來求解的題目,考查到的知識點有全等三角形的判定及性質(zhì),等邊三角形的判定,旋轉(zhuǎn)的性質(zhì)以及求弧長的公式.綜合性較強.20、(1);(2)或.【分析】(1)將點A(-1,-4)代入反比例函數(shù)解析式,即可得m的值;(2)分兩種情況討論:當P在第一象限或第三象限時,過點作于點,交x軸于點,,通過相似的性質(zhì)求出AC的長,然后求出點P的坐標,求出一次函數(shù)的解析式,即可求出k的取值范圍.【詳解】解:(1)將點A(-1,-4)代入反比例函數(shù)解析式,即可得m=4,∴反比例函數(shù)解析式是;(2)分兩種情況討論:當P在第一象限時,如圖1,當時,過點作于點,交x軸于點,∵,∴,,∴,∴AC=6,∴點P的縱坐標是2,把y=2代入中得x=2,∴點P的坐標是(2,2),∴,∴,∴一次函數(shù)的解析式為y=2x-2,當時,AC>6,此時點P的縱坐標大于2,k的值變大,所以k>2,∴;當P在第三象限時,如圖2,當時,過點作于點,交x軸于點,∵,∴,,∴,∴AC=6,∴點P的縱坐標是-10,把y=-10代入中得x=,∴點P的坐標是(,-10),∴,∴,∴一次函數(shù)的解析式為y=-10x-14,當時,AC>6,此時點P的縱坐標小于-10,k的值變小,所以k<-10,∴;綜上所述,的取值范圍或.【點睛】本題是函數(shù)和相似三角形的綜合題,難度較大.要緊盯著如何求點P坐標這一突破口,通過相似求出線段的長,從而解決問題.21、(1)△CFG∽△CBA,見解析;(2)【分析】(1)由題意利用相似三角形的判定定理-平行模型進行分析證明即可;(2)根據(jù)題意平行線分線段成比例定理進行分析求值.【詳解】解:(1)△CFG∽△CBA,理由如下,∵AB∥EF,∴FG∥AB,∴△CFG∽△CBA.(2)∵AB∥EF∥CD,∴,∴,∵△CFG∽△CBA,∴.【點睛】本題考查相似三角形的性質(zhì)及平行線分線段成比例定理,解題的關(guān)鍵是熟練運用相似三角形的性質(zhì)以及判定.22、(1)見解析;(2),【分析】(1)將方程轉(zhuǎn)化為一般式,然后得出根的判別式,得出判別式為非負數(shù)得出答案;(2)將代入方程求出的值,然后根據(jù)解方程的方法得出另一個根.【詳解】解:(1)∴對于任意實數(shù),方程總有兩個不相等的實數(shù)根;(2)當時,,∴【點睛】本題考查了解一元二次的方程以及判別式.23、(1)第30天的日銷售量為;(2)當時,【分析】(1)設(shè)y=kt+b,利用待定系數(shù)法即可解決問題.(2)日利潤=日銷售量×每kg利潤,據(jù)此分別表示前24天和后24天的日利潤,根據(jù)函數(shù)性質(zhì)求最大值后比較得結(jié)論.【詳解】(1)設(shè)y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,,∴y=-2t+1.將t=30代入上式,得:y=-2×30+1=2.所以在第30天的日銷售量是2kg.(2)設(shè)第天的銷售利潤為元,則當時,由題意得,==∴t=20時,w最大值為120元.當時,∵對稱軸t=44,a=2>0,∴在對稱軸左側(cè)w隨t增大而減小,∴t=25時,w最大值為210元,綜上所述第20天利潤最大,最大利潤為120元.【點睛】此題主要考查了二次函數(shù)的應(yīng)用,熟練掌握各函數(shù)的性質(zhì)和圖象特征,針對所給條件作出初步判斷后需驗證其正確性,最值問題需由函數(shù)的性質(zhì)求解時,正確表達關(guān)系式是關(guān)鍵.24、(1)見解析;(1)(3π﹣)cm1【分析】(1)由等腰三角形的性質(zhì)證出∠ODB=∠C.得出OD∥AC.由已知條件證出DE⊥OD,即可得出結(jié)論;(1)由垂徑定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面積,再求出扇形BOD的面積,即可得出結(jié)果.【詳解】(1)連接OD,如圖1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切線.(1)過O作OF⊥BD于F,如圖1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,∴DF==cm,∴BD=1DF=3cm,∴S△BOD=×BD×OF=×3×=cm1,S扇形BOD==3πcm1,∴S陰=S扇形BOD﹣S△BOD==(3π﹣)cm1.【點睛】本題考查了切線的判定、等腰三角形的性質(zhì)、平行線的判定與性質(zhì)、勾股定理、三角形和扇形面積的計算等知識;熟練掌握切線的判定,由垂徑定理和勾股定理求出OF和DF是解決問題(1)的關(guān)鍵.25、(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論