版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年吉林省長(zhǎng)春市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
3.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4
4.
5.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
6.A.6YB.6XYC.3XD.3X^2
7.
8.下列命題正確的是()A.A.
B.
C.
D.
9.設(shè)有直線(xiàn)當(dāng)直線(xiàn)l1與l2平行時(shí),λ等于().
A.1B.0C.-1/2D.-1
10.設(shè)z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
11.
12.
A.
B.
C.
D.
13.
14.下列命題正確的是().A.A.
B.
C.
D.
15.A.A.
B.
C.
D.
16.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動(dòng),輪緣上纏有不可伸長(zhǎng)的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時(shí),輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為vM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
17.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿(mǎn)足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)18.函數(shù)y=sinx在區(qū)間[0,π]上滿(mǎn)足羅爾定理的ξ等于()。A.0
B.
C.
D.π
19.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)20.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx
21.A.I1=I2
B.I1>I2
C.I1<I2
D.無(wú)法比較
22.
23.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且,則f'(1)等于().A.A.1/2B.1/4C.-1/4D.-1/224.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-225.()A.A.1B.2C.1/2D.-1
26.平衡積分卡控制是()首創(chuàng)的。
A.戴明B.施樂(lè)公司C.卡普蘭和諾頓D.國(guó)際標(biāo)準(zhǔn)化組織
27.
28.()工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開(kāi)和細(xì)化。
A.計(jì)劃B.組織C.控制D.領(lǐng)導(dǎo)
29.
A.-e
B.-e-1
C.e-1
D.e
30.
A.2x2+x+C
B.x2+x+C
C.2x2+C
D.x2+C
31.A.A.4B.-4C.2D.-232.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿(mǎn)足f'(-1)=0,當(dāng)x<-1時(shí),f'(x)<0;x>-1時(shí),f'(x)>0.則下列結(jié)論肯定正確的是().A.A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)
33.
34.
35.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)
36.
37.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點(diǎn)
B.存在唯一零點(diǎn)
C.存在極大值點(diǎn)
D.存在極小值點(diǎn)
38.
39.
40.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]41.設(shè)f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點(diǎn)
B.x0為f(x)的極小值點(diǎn)
C.x0不為f(x)的極值點(diǎn)
D.x0可能不為f(x)的極值點(diǎn)
42.
43.曲線(xiàn)y=x2+5x+4在點(diǎn)(-1,0)處切線(xiàn)的斜率為
A.2B.-2C.3D.-3
44.A.
B.
C.
D.
45.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線(xiàn)y=f(x)與直線(xiàn)x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
46.A.A.
B.
C.
D.
47.A.eB.e-1
C.e2
D.e-2
48.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四邊形ABCD的面積
D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍
49.。A.2B.1C.-1/2D.0
50.設(shè)函數(shù)f(x)=COS2x,則f′(x)=().
A.2sin2x
B.-2sin2x
C.sin2x
D.-sin2x
二、填空題(20題)51.
52.
53.
54.設(shè)f(x)=esinx,則=________。55.56.57.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。58.設(shè)z=x2y2+3x,則59.設(shè)f(0)=0,f'(0)存在,則60.
61.
62.
63.
64.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
65.
66.
67.
68.
69.70.y=ln(1+x2)的單調(diào)增加區(qū)間為_(kāi)_____.三、計(jì)算題(20題)71.
72.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).73.74.求微分方程的通解.75.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.76.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.
77.求微分方程y"-4y'+4y=e-2x的通解.
78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.80.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.81.82.證明:83.
84.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則85.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
86.
87.
88.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
89.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).90.四、解答題(10題)91.求微分方程xy'-y=x2的通解.
92.
93.
94.求95.
96.
97.求微分方程y"-3y'+2y=0的通解。
98.設(shè)y=3x+lnx,求y'.
99.
100.
五、高等數(shù)學(xué)(0題)101.
有()個(gè)間斷點(diǎn)。
A.1B.2C.3D.4六、解答題(0題)102.
參考答案
1.A
2.D本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
可知應(yīng)選D.
3.A
4.C
5.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性。
6.D
7.B
8.D
9.C解析:
10.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
11.C
12.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
13.B
14.D本題考查的知識(shí)點(diǎn)為收斂級(jí)數(shù)的性質(zhì)和絕對(duì)收斂的概念.
由絕對(duì)收斂級(jí)數(shù)的性質(zhì)“絕對(duì)收斂的級(jí)數(shù)必定收斂”可知應(yīng)選D.
15.B
16.B
17.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
18.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
19.C
20.D
21.C因積分區(qū)域D是以點(diǎn)(2,1)為圓心的一單位圓,且它位于直線(xiàn)x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
22.A
23.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.
當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得
可知f'(1)=1/4,故應(yīng)選B.
24.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
25.C由于f'(2)=1,則
26.C
27.A
28.A解析:計(jì)劃工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開(kāi)和細(xì)分。
29.C所給問(wèn)題為反常積分問(wèn)題,由定義可知
因此選C.
30.B
31.D
32.C本題考查的知識(shí)點(diǎn)為極值的第一充分條件.
由f'(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí),f'(x)<0;當(dāng)x>-1時(shí),f'(x)>1,由極值的第一充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
33.A
34.B
35.A
36.C
37.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).
綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.
38.A
39.C
40.B∵一1≤x一1≤1∴0≤x≤2。
41.A本題考查的知識(shí)點(diǎn)為函數(shù)極值的第二充分條件.
由極值的第二充分條件可知應(yīng)選A.
42.D解析:
43.C解析:
44.C
45.C
46.D
47.C
48.D
49.A
50.B由復(fù)合函數(shù)求導(dǎo)法則,可得
故選B.
51.1/200
52.
53.054.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。
55.56.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>
57.因?yàn)椤?1dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對(duì)x的積分為。58.2xy(x+y)+3本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
由于z=x2y2+3x,可知
59.f'(0)本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f'(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f'(0)存在,并沒(méi)有給出,f'(z)(x≠0)存在,也沒(méi)有給出,f'(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.60.1
61.2
62.yxy-1
63.x/1=y/2=z/-1
64.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。
65.y=0
66.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).67.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問(wèn)題。
68.11解析:69.本題考查的知識(shí)點(diǎn)為無(wú)窮小的性質(zhì)。70.(0,+∞)本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于y=ln(1+x2),其定義域?yàn)?-∞,+∞).
又由于,令y'=0得唯一駐點(diǎn)x=0.
當(dāng)x>0時(shí),總有y'>0,從而y單調(diào)增加.
可知y=ln(1+x2)的單調(diào)增加區(qū)間為(0,+∞).
71.
72.
73.
74.75.由二重積分物理意義知
76.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為
77.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
78.
79.函數(shù)的定義域?yàn)?/p>
注意
80.
81.
82.
83.由一階線(xiàn)性微分方程通解公式有
84.由等價(jià)無(wú)窮小量的定義可知
85.
86.
則
87.
88.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
89.
列表:
說(shuō)明
90.91.將方程化為標(biāo)準(zhǔn)形式本題考查的知識(shí)點(diǎn)為求解一階線(xiàn)性微分方程.
求解一階線(xiàn)性微分方程??梢圆捎脙煞N解法:
92.93.本題考查的知識(shí)點(diǎn)為二重積分的物理應(yīng)用.
解法1利用對(duì)稱(chēng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【《卡薩帝電子公司渠道沖突問(wèn)題探析》4200字論文】
- 2024年家政服務(wù)勞務(wù)合同參考范本(三篇)
- 2024年安全生產(chǎn)獎(jiǎng)罰制度范例(二篇)
- 2024年商業(yè)用房房屋租賃合同(二篇)
- 2024年小學(xué)生班主任工作計(jì)劃范文(二篇)
- 2024年小學(xué)實(shí)習(xí)班主任工作計(jì)劃例文(三篇)
- 2024年委托建設(shè)合同格式范本(二篇)
- 2024年學(xué)生會(huì)辦公室工作總結(jié)簡(jiǎn)單版(四篇)
- 2024年學(xué)校后勤人員工作計(jì)劃模版(三篇)
- 2024年后勤保障工作計(jì)劃模版(四篇)
- 班主任基本功大賽情境案例答辯題22題匯編(廣東)
- 作物育種學(xué)智慧樹(shù)知到答案2024年中國(guó)農(nóng)業(yè)大學(xué)
- Unit 3 My School教學(xué)設(shè)計(jì)2024年秋人教版新教材七年級(jí)英語(yǔ)上冊(cè)
- 《壓覆礦產(chǎn)資源估算規(guī)范》編制說(shuō)明
- 遼寧省沈陽(yáng)市新民市2023--2024學(xué)年八年級(jí)上學(xué)期期中考試地理生物試題
- 《食品添加劑應(yīng)用技術(shù)》第二版 課件 任務(wù)5.2 甜味劑的使用
- 宏觀經(jīng)濟(jì)學(xué)全套課件(完整)
- 瓦工貼磚承包簡(jiǎn)單版合同范本
- DB11-T 854-2023 占道作業(yè)交通安全設(shè)施設(shè)置技術(shù)要求
- Scrum敏捷開(kāi)發(fā)模式講解課件
- 2024年廣西旅發(fā)旅行社集團(tuán)限公司招聘5名公開(kāi)引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(kù)(共500題)答案詳解版
評(píng)論
0/150
提交評(píng)論