2022-2023學(xué)年江西省景德鎮(zhèn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁
2022-2023學(xué)年江西省景德鎮(zhèn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁
2022-2023學(xué)年江西省景德鎮(zhèn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁
2022-2023學(xué)年江西省景德鎮(zhèn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁
2022-2023學(xué)年江西省景德鎮(zhèn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年江西省景德鎮(zhèn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.無法判定斂散性

2.為了提高混凝土的抗拉強(qiáng)度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。

A.

B.

C.

D.

3.A.0B.1C.∞D(zhuǎn).不存在但不是∞

4.

5.A.3B.2C.1D.1/2

6.A.2x

B.3+2x

C.3

D.x2

7.A.A.0B.1C.2D.不存在

8.

9.微分方程y′-y=0的通解為().

A.y=ex+C

B.y=e-x+C

C.y=Cex

D.y=Ce-x

10.

11.

12.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。

A.充要條件B.充分條件C.必要條件D.無關(guān)條件

13.

14.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

15.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx

16.

17.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x

B.1/x

C.-1/x2

D.1/x2

18.設(shè)z=ysinx,則等于().A.A.-cosxB.-ycosxC.cosxD.ycosx

19.A.eB.e-1

C.e2

D.e-2

20.

二、填空題(20題)21.

22.

23.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.

24.

25.

26.設(shè),則y'=______.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.證明:

42.求微分方程y"-4y'+4y=e-2x的通解.

43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

44.

45.

46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

49.

50.

51.求微分方程的通解.

52.

53.將f(x)=e-2X展開為x的冪級(jí)數(shù).

54.求曲線在點(diǎn)(1,3)處的切線方程.

55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

56.

57.

58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

59.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

60.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)61.

62.將f(x)=1/3-x展開為(x+2)的冪級(jí)數(shù),并指出其收斂區(qū)間。

63.

64.

65.設(shè)z=xy3+2yx2求

66.設(shè)有一圓形薄片x2+y2≤α2,在其上一點(diǎn)M(x,y)的面密度與點(diǎn)M到點(diǎn)(0,0)的距離成正比,求分布在此薄片上的物質(zhì)的質(zhì)量。

67.函數(shù)y=y(x)由方程ey=sin(x+y)確定,求dy.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對(duì)

六、解答題(0題)72.設(shè)y=ln(1+x2),求dy。

參考答案

1.C

2.D

3.D本題考查了函數(shù)的極限的知識(shí)點(diǎn)。

4.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。

5.B,可知應(yīng)選B。

6.A由導(dǎo)數(shù)的基本公式及四則運(yùn)算法則,有故選A.

7.C本題考查的知識(shí)點(diǎn)為左極限、右極限與極限的關(guān)系.

8.D解析:

9.C所給方程為可分離變量方程.

10.C解析:

11.A

12.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件

13.C解析:

14.C

15.Cy=cosx,y'=-sinx,y''=-cosx.

16.B

17.C

18.C本題考查的知識(shí)點(diǎn)為高階偏導(dǎo)數(shù).

由于z=ysinx,因此

可知應(yīng)選C.

19.C

20.A

21.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

注意:可以變形,化為形式的極限.但所給極限通常可以先變形:

22.

23.

f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以,f''(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.

24.

25.-2/π本題考查了對(duì)由參數(shù)方程確定的函數(shù)求導(dǎo)的知識(shí)點(diǎn).

26.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.

27.

28.

29.

30.1/24

31.1/21/2解析:

32.

33.2xy(x+y)+3

34.ln|1-cosx|+Cln|1-cosx|+C解析:

35.

36.00解析:

37.4

38.

39.

解析:

40.解析:

41.

42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

43.

44.

45.

46.由等價(jià)無窮小量的定義可知

47.

48.函數(shù)的定義域?yàn)?/p>

注意

49.由一階線性微分方程通解公式有

50.

51.

52.

53.

54.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

55.由二重積分物理意義知

56.

57.

58.

列表:

說明

59.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論