二次函數(shù)性質(zhì)知識(shí)點(diǎn)總結(jié)填空(非試卷)_第1頁
二次函數(shù)性質(zhì)知識(shí)點(diǎn)總結(jié)填空(非試卷)_第2頁
二次函數(shù)性質(zhì)知識(shí)點(diǎn)總結(jié)填空(非試卷)_第3頁
二次函數(shù)性質(zhì)知識(shí)點(diǎn)總結(jié)填空(非試卷)_第4頁
二次函數(shù)性質(zhì)知識(shí)點(diǎn)總結(jié)填空(非試卷)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

二次函數(shù)性質(zhì)知識(shí)點(diǎn)總結(jié)填空(非試卷)二次函數(shù)性質(zhì)學(xué)問點(diǎn)總結(jié)填空(非試卷)

二次函數(shù)性質(zhì)(復(fù)習(xí))

潤州區(qū)教研室徐義明

一、教學(xué)目標(biāo)

1、使學(xué)生進(jìn)一步理解二次函數(shù)性質(zhì)及系數(shù)a、b、c及△與函數(shù)yax2bxc圖象之間的關(guān)系。

2、會(huì)求二次函數(shù)圖象與坐標(biāo)軸交點(diǎn),理解二次函數(shù)與二次方程、二次不等式之間關(guān)系。4、讓學(xué)生感受數(shù)形結(jié)合的思想,初步把握數(shù)形結(jié)合解決問題的方法。

5、通過自主探究、合作溝通活動(dòng),激發(fā)學(xué)生主動(dòng)學(xué)習(xí)熱忱以及與同伴合作的欲望。二、教學(xué)重點(diǎn):二次函數(shù)性質(zhì)的應(yīng)用;難點(diǎn):對(duì)數(shù)形結(jié)合數(shù)學(xué)思想的感受。三、教學(xué)過程:教學(xué)內(nèi)容學(xué)生活動(dòng)1、回憶并歸納總結(jié)二次函數(shù)性質(zhì)2、溝通爭論根底練習(xí)。3、展現(xiàn)成果4提出問題爭論溝通教師活動(dòng)1、引導(dǎo)學(xué)生歸納、總結(jié)二次函數(shù)性質(zhì)2、組織學(xué)生溝通、爭論,并參加、指導(dǎo)3、總結(jié):方法和留意點(diǎn)(1)、增減性留意開口方向(2)、拋物線平移看頂點(diǎn)(3)、求與x軸、y軸交點(diǎn)的方法。(一)學(xué)問回憶1、填表ya(xh)2k(a0)yax2bxc(a0)對(duì)稱軸頂點(diǎn)最值增減性2、根底訓(xùn)練(1)拋物線y1(x2)2的對(duì)稱軸為,2頂點(diǎn)坐標(biāo)為。當(dāng)x=時(shí),y取最值,此值為。當(dāng)x2時(shí),y隨x的增大而。(2)由拋物線y2112x怎樣平移得到y(tǒng)(X1)22。22(3)拋物線yxx2與x軸交點(diǎn)為與y軸交點(diǎn)為。(4)已知:函數(shù)y=4x-bx+5當(dāng)x-2時(shí),y隨x的增大而增大,則b的值為(5)如圖,函數(shù)y=ax+bx+c的圖像如下圖,當(dāng)x=時(shí),y=0;當(dāng)x時(shí),y>0,當(dāng)x時(shí),y1.獨(dú)立(二).問題探究思索問題1.函數(shù)y=ax2+bx+c的圖像如下圖,2.合作探究,2你能確定a、b、c及△=b-4ac的符號(hào)嗎?有規(guī)律嗎?3.小組溝通4.班級(jí)展現(xiàn)(問題1A層面學(xué)生,問2問題2.已知:拋物線y=x-(a+2)x+9的頂點(diǎn)在坐標(biāo)軸,求a的值.題2、3B層面學(xué)生)問題3.已知。對(duì)任意實(shí)數(shù)x,二次函數(shù)y=--x2+x+2m-1的值均為負(fù)數(shù),求m的范圍。5.學(xué)生相互評(píng)價(jià)(三)課堂穩(wěn)固總結(jié)。1、函數(shù)yax2bxc的圖像如下圖,則a、b、c符號(hào)為()A、a0,b0,c0練習(xí)1獨(dú)立思索B、a0,b0,c0答復(fù)(A層次學(xué)生)C、a0,b0,c0D、a0,b0,c0練習(xí)222、直線yaxb與拋物線yaxb在同一坐標(biāo)系中的圖像大致獨(dú)立思索,為()同伴溝通(B層次學(xué)生答復(fù))問題1:1.巡察并指導(dǎo)學(xué)生爭論2.幫忙學(xué)生歸納規(guī)律:a-開口b-對(duì)稱軸(左同右異)c-與y軸交點(diǎn)△-與x軸交點(diǎn)個(gè)數(shù)問題2:強(qiáng)調(diào)分類爭論。問題3:啟發(fā)學(xué)生應(yīng)用數(shù)形結(jié)合分析問題。練習(xí)1重點(diǎn)檢查A層次學(xué)生把握狀況。練習(xí)2(1)a、b分別在兩函數(shù)圖象中幾何意義。(2)排解法方法(3)兩函數(shù)圖象的聯(lián)系3、已知:二次函數(shù)yax2bxc的圖像如圖,以下結(jié)論:(1)abc0;(2)abc0;(3)abc0;(4)b2ab其中正確的結(jié)論有()A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)4、函數(shù)yx2xm(m為常數(shù))的圖像如圖,若xa時(shí),y0,則xa1時(shí),函數(shù)值()A、y0B、0ymC、ymD、ym(四)、課堂小結(jié):1.二次函數(shù)的性質(zhì)2.a(chǎn)、b、c及b24ac與函數(shù)yax2bxc圖象之間的關(guān)系。3.拋物線yax2bxc與坐標(biāo)軸交點(diǎn)求法4.拋物線yaxbxc與x軸位置關(guān)系5.二次函數(shù)與一元二次方程的關(guān)系6.?dāng)?shù)形結(jié)合思想2練習(xí)3、4采納小組爭論,同伴合作方式進(jìn)展。學(xué)生對(duì)本節(jié)課進(jìn)展歸納總結(jié)練習(xí)3啟發(fā)學(xué)生:(1)x=1時(shí)函數(shù)值等于什么?(2)圖中有那些信息?練習(xí)4啟發(fā)學(xué)生:(1)a的范圍是什么?(2)a-1的范圍是什么?(3)取特別值a12進(jìn)展推斷。引導(dǎo)學(xué)生歸納總結(jié)本節(jié)課內(nèi)容五、課后作業(yè)1、已知yax2bxc的圖象如下圖,試推斷a,b,c的符號(hào)。2、直線yaxb和拋物線yx2axb在同一坐標(biāo)系中的圖象,可能是()3、已知,點(diǎn)(x1,y1),(x2,y2),(x3,y3)均在拋物線y2x24x1上,且1x1x2x31,則y1,y2,y3的大小關(guān)系為。4、已知,二次函數(shù)yx2(3m)x2m1的圖象不經(jīng)過第三象限,求m的范圍。

擴(kuò)展閱讀:初中二次函數(shù)學(xué)問點(diǎn)總結(jié)與練習(xí)題

二次函數(shù)學(xué)問點(diǎn)總結(jié)

一、二次函數(shù)概念:

a0)b,c是常數(shù),1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這

c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a0,而b,數(shù).

2.二次函數(shù)yax2bxc的構(gòu)造特征:

⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.

b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).⑵a,二、二次函數(shù)的根本形式

1.二次函數(shù)根本形式:yax2的性質(zhì):a的肯定值越大,拋物線的開口越小。

a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減??;x0時(shí),y有最小值0.x0時(shí),y隨x的增大而減?。粁0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.

2.yax2c的性質(zhì):上加下減。

a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.

3.yaxh的性質(zhì):

左加右減。

2a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減??;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減?。粁h時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值0.

1

4.yaxhk的性質(zhì):

2a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨h,kh,kX=hx的增大而減?。粁h時(shí),y有最小值k.xh時(shí),y隨x的增大而減?。粁h時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.三、二次函數(shù)圖象的平移1.平移步驟:

方法一:⑴將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;⑵保持拋物線yax2的外形不變,將其頂點(diǎn)平移到h,k處,詳細(xì)平移方法如下:

向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

五點(diǎn)繪圖法:利用配方法將二次函數(shù)yaxbxc化為頂點(diǎn)式y(tǒng)a(xh)2k,確定其開口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo),然后在對(duì)稱軸兩側(cè),左右對(duì)稱地描點(diǎn)畫圖.一般我們選取的五點(diǎn)為:頂點(diǎn)、與y軸

2的交點(diǎn)0,c、以及0,c關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)2h,c、與x軸的交點(diǎn)x1,0,x2,0(若與x軸沒有交點(diǎn),則取兩組關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)).

畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開口方向,對(duì)稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).

六、二次函數(shù)yax2bxc的性質(zhì)

b4acb2b1.當(dāng)a0時(shí),拋物線開口向上,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.

2a4a2a當(dāng)xbbb時(shí),y隨x的增大而減??;當(dāng)x時(shí),y隨x的增大而增大;當(dāng)x時(shí),y有最小2a2a2a4acb2值.

4ab4acb2bb2.當(dāng)a0時(shí),拋物線開口向下,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,時(shí),y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時(shí),y隨x的增大而減??;當(dāng)x時(shí),y有最大值

2a2a4a七、二次函數(shù)解析式的表示方法

1.一般式:yax2bxc(a,b,c為常數(shù),a0);

2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);

3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).

留意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非全部的二次函數(shù)都可以寫成交點(diǎn)式,只

有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.

八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系

1.二次項(xiàng)系數(shù)a

二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),明顯a0.

⑴當(dāng)a0時(shí),拋物線開口向上,a的值越大,開口越小,反之a(chǎn)的值越小,開口越大;⑵當(dāng)a0時(shí),拋物線開口向下,a的值越小,開口越小,反之a(chǎn)的值越大,開口越大.

總結(jié)起來,a打算了拋物線開口的大小和方向,a的正負(fù)打算開口方向,a的大小打算開口的大?。?.一次項(xiàng)系數(shù)b

在二次項(xiàng)系數(shù)a確定的前提下,b打算了拋物線的對(duì)稱軸.⑴在a0的前提下,

當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸左側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即

3

當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸右側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的左側(cè).2a總結(jié)起來,在a確定的前提下,b打算了拋物線對(duì)稱軸的位置.

ab的符號(hào)的判定:對(duì)稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說就是2a“左同右異”總結(jié):

3.常數(shù)項(xiàng)c

⑴當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;⑵當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;⑶當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來,c打算了拋物線與y軸交點(diǎn)的位置.

b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式確實(shí)定:

依據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必需依據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问剑拍苁菇忸}簡便.一般來說,有如下幾種狀況:

1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;

2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(?。┲担话氵x用頂點(diǎn)式;3.已知拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;4.已知拋物線上縱坐標(biāo)一樣的兩點(diǎn),常選用頂點(diǎn)式.

九、二次函數(shù)圖象的對(duì)稱

二次函數(shù)圖象的對(duì)稱一般有五種狀況,可以用一般式或頂點(diǎn)式表達(dá)1.關(guān)于x軸對(duì)稱

ya2xbx關(guān)于cx軸對(duì)稱后,得到的解析式是yax2bxc;

yaxhk關(guān)于x軸對(duì)稱后,得到的解析式是yaxhk;2.關(guān)于y軸對(duì)稱

ya2xbx關(guān)于cy軸對(duì)稱后,得到的解析式是yax2bxc;

22yaxhk關(guān)于y軸對(duì)稱后,得到的解析式是yaxhk;3.關(guān)于原點(diǎn)對(duì)稱

ya2xbx關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是cyax2bxc;yaxh關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是kyaxhk;4.關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)

2222b2yaxbx關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是cyaxbxc;

2a224

yaxhk關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxhk.5.關(guān)于點(diǎn)m,n對(duì)稱

n對(duì)稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,2222依據(jù)對(duì)稱的性質(zhì),明顯無論作何種對(duì)稱變換,拋物線的外形肯定不會(huì)發(fā)生變化,因此a永久不變.求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或便利運(yùn)算的原則,選擇適宜的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對(duì)稱拋物線的表達(dá)式.

十、二次函數(shù)與一元二次方程:

1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)狀況):

一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特別狀況.圖象與x軸的交點(diǎn)個(gè)數(shù):

①當(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.

a2②當(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);

③當(dāng)0時(shí),圖象與x軸沒有交點(diǎn).

1“當(dāng)a0時(shí),圖象落在x軸的上方,無論x為任何實(shí)數(shù),都有y0;2“當(dāng)a0時(shí),圖象落在x軸的下方,無論x為任何實(shí)數(shù),都有y0.2.拋物線yax2bxc的圖象與y軸肯定相交,交點(diǎn)坐標(biāo)為(0,c);

3.二次函數(shù)常用解題方法總結(jié):

⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;

⑵求二次函數(shù)的最大(?。┲敌枰门浞椒▽⒍魏瘮?shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;

⑶依據(jù)圖象的位置推斷二次函數(shù)yax2bxc中a,b,c的符號(hào),或由二次函數(shù)中a,b,c的符號(hào)推斷圖象的位置,要數(shù)形結(jié)合;

⑷二次函數(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱性求出另一個(gè)交點(diǎn)坐標(biāo).⑸與二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時(shí)為例,提醒二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:

00拋物線與x軸有兩個(gè)交點(diǎn)拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無交點(diǎn)二次三項(xiàng)式的值可正、可零、可負(fù)一元二次方程有兩個(gè)不相等實(shí)根二次三項(xiàng)式的值為非負(fù)一元二次方程有兩個(gè)相等的實(shí)數(shù)根二次三項(xiàng)式的值恒為正一元二次方程無實(shí)數(shù)根.5

圖像參考:

y=2x2y=x22y=x2y=2x2+2y=2x2y=2x2-4y=2x2y=2(x-4)2y=2(x-4)2-3

2y=-x2y=-x2y=-2x2

y=3(x+4)2y=3x2y=3(x-2)2y=-2(x+3)2y=-2x2y=-2(x-3)2

6

十一、函數(shù)的應(yīng)用

剎車距離二次函數(shù)應(yīng)用何時(shí)獲得最大利潤

最大面積是多少二次函數(shù)考察重點(diǎn)與常見題型

1.考察二次函數(shù)的定義、性質(zhì),有關(guān)試題常消失在選擇題中,如:

已知以x為自變量的二次函數(shù)y(m2)x2m2m2的圖像經(jīng)過原點(diǎn),則m的值是2.綜合考察正比例、反比例、一次函數(shù)、二次函數(shù)的圖像,習(xí)題的特點(diǎn)是在同始終角坐標(biāo)系內(nèi)考察

兩個(gè)函數(shù)的圖像,試題類型為選擇題,如:

2如圖,假如函數(shù)ykxb的圖像在第一、二、三象限內(nèi),那么函數(shù)ykxbx1的圖像大致是()

yyyy110xo-1x0x0-1xABCD3.考察用待定系數(shù)法求二次函數(shù)的解析式,有關(guān)習(xí)題消失的頻率很高,習(xí)題類型有中檔解答題和選

拔性的綜合題,如:已知一條拋物線經(jīng)過(0,3),(4,6)兩點(diǎn),對(duì)稱軸為x5,求這條拋物線的解析式。34.考察用配方法求拋物線的頂點(diǎn)坐標(biāo)、對(duì)稱軸、二次函數(shù)的極值,有關(guān)試題為解答題,如:3

已知拋物線yax2bxc(a≠0)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)是-1、3,與y軸交點(diǎn)的縱坐標(biāo)是-

2(1)確定拋物線的解析式;(2)用配方法確定拋物線的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo).

5.考察代數(shù)與幾何的綜合力量,常見的作為專項(xiàng)壓軸題?!纠}經(jīng)典】

由拋物線的位置確定系數(shù)的符號(hào)

例1(1)二次函數(shù)yax2bxc的圖像如圖1,則點(diǎn)M(b,)在()

A.第一象限B.其次象限C.第三象限D(zhuǎn).第四象限

(2)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖2所示,則以下結(jié)論:①a、b同號(hào);②當(dāng)x=1和x=3時(shí),函數(shù)值相等;③4a+b=0;④當(dāng)y=-2時(shí),x的值只能取0.其中正確的個(gè)數(shù)是()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

ca(1)(2)

7

【點(diǎn)評(píng)】弄清拋物線的位置與系數(shù)a,b,c之間的關(guān)系,是解決問題的關(guān)鍵.

例2.已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(-2,O)、(x1,0),且1

(2)請(qǐng)你依據(jù)已有的信息,在原題中的矩形框中,填加一個(gè)適當(dāng)?shù)臈l件,把原題補(bǔ)充完整。

點(diǎn)評(píng):對(duì)于第(1)小題,要依據(jù)已知和結(jié)論中現(xiàn)有信息求出題中的二次函數(shù)解析式,就要把原來的結(jié)論“函數(shù)圖象的對(duì)稱軸是x=3”當(dāng)作已知來用,再結(jié)合條件“圖象經(jīng)過點(diǎn)A(c,-2)”,就可以列出兩個(gè)方程了,而解析式中只有兩個(gè)未知數(shù),所以能夠求出題中的二次函數(shù)解析式。對(duì)于第(2)小題,只要給出的條件能夠使求出的二次函數(shù)解析式是第(1)小題中的解析式就可以了。而從不同的角度考慮可以添加出不同的條件,可以考慮再給圖象上的一個(gè)任意點(diǎn)的坐標(biāo),可以給出頂點(diǎn)的坐標(biāo)或與坐標(biāo)軸的一個(gè)交點(diǎn)的坐標(biāo)等。

[解答](1)依據(jù)y12xbxc的圖象經(jīng)過點(diǎn)A(c,-2),圖象的對(duì)稱軸是x=3,2122cbcc2,得b3,122解得b3,

c2.12x3x2.圖象如下圖。2所以所求二次函數(shù)解析式為y(2)在解析式中令y=0,得

12x3x20,解得x135,x235.2所以可以填“拋物線與x軸的一個(gè)交點(diǎn)的坐標(biāo)是(3+5,0)”或“拋物線與x軸的一個(gè)交點(diǎn)的坐標(biāo)是

(35,0).

令x=3代入解析式,得y所以拋物線y5,2125x3x2的頂點(diǎn)坐標(biāo)為(3,),

225所以也可以填拋物線的頂點(diǎn)坐標(biāo)為(3,)等等。

2函數(shù)主要關(guān)注:通過不同的途徑(圖象、解析式等)了解函數(shù)的詳細(xì)特征;借助多種現(xiàn)實(shí)背景理解函數(shù);將函數(shù)視為“變化過程中變量之間關(guān)系”的數(shù)學(xué)模型;滲透函數(shù)的思想;關(guān)注函數(shù)與相關(guān)學(xué)問的聯(lián)系。

用二次函數(shù)解決最值問題

例1已知邊長為4的正方形截去一個(gè)角后成為五邊形ABCDE(如圖),其中AF=2,BF=1.試在AB上求一點(diǎn)P,使矩形PNDM有最大面積.

【評(píng)析】此題是一道代數(shù)幾何綜合題,把相像三角形與二次函數(shù)的學(xué)問有機(jī)的結(jié)合在一起,能很好考察學(xué)生的綜合應(yīng)用力量.同時(shí),也給學(xué)生探究解題思路留下了思維空間.

例2某產(chǎn)品每件本錢10元,試銷階段每件產(chǎn)品的銷售價(jià)x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如下表:

x(元)152030y(件)25201*若日銷售量y是銷售價(jià)x的一次函數(shù).(1)求出日銷售量y(件)與銷售價(jià)x(元)的函數(shù)關(guān)系式;

(2)要使每日的銷售利潤最大,每件產(chǎn)品的銷售價(jià)應(yīng)定為多少元?此時(shí)每日銷售利潤是多少元?

9

【解析】(1)設(shè)此一次函數(shù)表達(dá)式為y=kx+b.則15kb25,解得k=-1,b=40,即一次函數(shù)表達(dá)

2kb20式為y=-x+40.

(2)設(shè)每件產(chǎn)品的銷售價(jià)應(yīng)定為x元,所獲銷售利潤為w元w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225.

產(chǎn)品的銷售價(jià)應(yīng)定為25元,此時(shí)每日獲得最大銷售利潤為225元.

【點(diǎn)評(píng)】解決最值問題應(yīng)用題的思路與一般應(yīng)用題類似,也有區(qū)分,主要有兩點(diǎn):(1)設(shè)未知數(shù)在“當(dāng)某某為何值時(shí),什么最大(或最小、最?。钡脑O(shè)問中,“某某”要設(shè)為自變量,“什么”要設(shè)為函數(shù);(2)問的求解依靠配方法或最值公式,而不是解方程.

例3.你知道嗎?平常我們?cè)谔罄K時(shí),繩甩到最高處的外形可近似地看為拋物線.如下圖,正在甩繩

的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時(shí)剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如右圖所示)()

A.1.5mB.1.625mC.1.66mD.1.67m分析:此題考察二次函數(shù)的應(yīng)用答案:B

二.二次函數(shù)局部

1.如下圖是二次函數(shù)yaxbxc圖象的一局部,圖象過A點(diǎn)(3,0),二次函數(shù)圖象對(duì)稱軸為x1,

y給出四個(gè)結(jié)論:

①b4ac;②bc0;③2ab0;④a-b+c>0其中正確結(jié)論是()A.②④

B.①③

C.②③

D.①④

Ox122xA(3,0)第1題圖

20)、(x1,2.已知二次函數(shù)yaxbxc的圖象與x軸交于點(diǎn)(2,0),且1x12,與y軸的正半軸的2)的下方.以下結(jié)論:①4a2bc0;②ab0;③2ac0;④2ab10;③交點(diǎn)在(0,4a+c

4.把拋物線yx2向左平移1個(gè)單位,然后向上平移3個(gè)單位,則平移后拋物線的解析式為()A.y(x1)23C.y(x1)23

2B.y(x1)23D.y(x1)23

5.把拋物線y=ax+bx+c的圖象先向右平移3個(gè)單位,再向下平移2個(gè)單位,所得的圖象的解析式是y=x-3x+5,則a+b+c=__________

6.圖6(1)是一個(gè)橫斷面為拋物線外形的拱橋,當(dāng)水面在l時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2m,水面寬4m.如圖6(2)建立平面直角坐標(biāo)系,則拋物線的關(guān)系式是()A.y2x2B.y2x2C.y212D.yx

212x2

圖6(1)圖6(2)

7、如圖是拋物線yax2bxc的一局部,其對(duì)稱軸為直線x=1,若其與x軸一交點(diǎn)為B(3,0),則由圖象可知,不等式axbxc>0的解集是

第7題圖

28.依據(jù)下表中的二次函數(shù)yax2bxc的自變量x與函數(shù)y的對(duì)應(yīng)值,可推斷該二次函數(shù)的圖象與x軸().

x11y07412

742A.只有一個(gè)交點(diǎn)B.有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè)C.有兩個(gè)交點(diǎn),且它們均在y軸同側(cè)D.無交點(diǎn)

9.如圖,拋物線yax2bxc與x軸的一個(gè)交點(diǎn)A在點(diǎn)(-2,0)和(-1,0)之間(包括這兩點(diǎn)),頂點(diǎn)C是矩形DEFG上(包括邊界和內(nèi)部)的一個(gè)動(dòng)點(diǎn),則

(1)abc#.0(填“”或“”);(1)a的取值范圍是#.

10(本小題總分值6分)

2如圖二次函數(shù)yxbxc的圖象經(jīng)過A1,0和B3,0兩點(diǎn),且交y軸于點(diǎn)C.

11

(1)試確定b、c的值;

(2)過點(diǎn)C作CD∥x軸交拋物線于點(diǎn)D,點(diǎn)M為此拋物線的頂點(diǎn),試確定△MCD的外形.

b4acb2參考公式:頂點(diǎn)坐標(biāo),

4a2a

11如圖,拋物線yaxx2yA0C

Bx3與x軸正半軸交于點(diǎn)A(3,0).以O(shè)A為邊在x軸上方作正方形OABC,2延長CB交拋物線于點(diǎn)D,再以BD為邊向上作正方形BDEF.(1)求a的值.(2分)

(2)求點(diǎn)F的坐標(biāo).(5分)12.(此題總分值10分)

,2).如圖,在平面直角坐標(biāo)系中,OBOA,且OB2OA,點(diǎn)A的坐標(biāo)是(1(1)求點(diǎn)B的坐標(biāo);

(2)求過點(diǎn)A、O、B的拋物線的表達(dá)式;

(3)連接AB,在(2)中的拋物線上求出點(diǎn)P,使得S△ABPS△ABO.13.(本小題總分值10分)

已知一元二次方程xpxq10的一根為2.(1)求q關(guān)于p的關(guān)系式;

(2)求證:拋物線yxpxq與x軸恒有兩個(gè)交點(diǎn);

1222yA1O1Bx

14.(10分)鞋子的“鞋碼”和鞋長(cm)存在一種換算關(guān)系,下表是幾組“鞋碼”與鞋長換算的對(duì)應(yīng)數(shù)值:[注:“鞋碼”是表示鞋子大小的一種號(hào)碼]

鞋長(cm)鞋碼(號(hào))

1622

1928

2132

2438

(1)設(shè)鞋長為x,“鞋碼”為y,試推斷點(diǎn)(x,y)在你學(xué)過的哪種函數(shù)的圖象上?(2)求x、y之間的函數(shù)關(guān)系式;

(3)假如某人穿44號(hào)“鞋碼”的鞋,那么他的鞋長是多少?15.(總分值8分)閱讀材料,解答問題.y例用圖象法解一元二次不等式:x2x30.解:設(shè)yx2x3,則y是x的二次函數(shù).

22321a10,拋物線開口向上.

又當(dāng)y0時(shí),x2x30,解得x11,x23.

221123123x由此得拋物線yx2x3的大致圖象如下圖.

觀看函數(shù)圖象可知:當(dāng)x1或x3時(shí),y0.

24(第22題)

x22x30的解集是:x1或x3.

(1)觀看圖象,直接寫出一元二次不等式:x2x30的解集是____________;(2)仿照上例,用圖象法解一元二次不等式:x10.(大致圖象畫在答題卡上)...

2213

以下是二次函數(shù)和相像結(jié)合的幾道經(jīng)典題:

16、(9分)如圖11,拋物線ya(x3)(x1)與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B右側(cè)),過點(diǎn)A的直線交拋物線于另一點(diǎn)C,點(diǎn)C的坐標(biāo)為(-2,6).

(1)求a的值及直線AC的函數(shù)關(guān)系式;(2)P是線段AC上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)M,交x軸于點(diǎn)N.

①求線段PM長度的最大值;

②在拋物線上是否存在這樣的點(diǎn)M,使得△CMP與△APN相像?假如存在,請(qǐng)直接寫出一個(gè)M的坐標(biāo)(不必寫解答過程);假如不存在,請(qǐng)說明理由.

17.如圖,二次函數(shù)的圖象經(jīng)過點(diǎn)D(0,73),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB

9的長為6.

⑴求二次函數(shù)的解析式;

⑵在該拋物線的對(duì)稱軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);

⑶在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相像?假如存在,求出點(diǎn)Q的坐標(biāo);假如不存在,請(qǐng)說明理由.

14

18.(此題總分值10分)

如圖,拋物線的頂點(diǎn)為A(2,1),且經(jīng)過原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B.

(1)求拋物線的解析式;

(2)在拋物線上求點(diǎn)M,使△MOB的面積是△AOB面積的3倍;

(3)連結(jié)OA,AB,在x軸下方的拋物線上是否存在點(diǎn)N,使△OBN與△OAB相像?若存在,求出N點(diǎn)的坐標(biāo);若不存在,說明理由.

19.(此題總分值10分)

如圖,已知拋物線y=過點(diǎn)C的直線y=

yOABx32

x+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn),A點(diǎn)的坐標(biāo)為(-1,0),43x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過P作PH⊥OB于點(diǎn)H.若4tPB=5t,且0<t<1.

(1)填空:點(diǎn)C的坐標(biāo)是_▲_,b=_▲_,c=_▲_;(2)求線段QH的長(用含t的式子表示);

(3)依點(diǎn)P的變化,是否存在t的值,使以P、H、Q形與△COQ相像?若存在,求出全部t的值;若不存在,說A15

CO為頂點(diǎn)的三角

yQHP明理由.

Bx

20.(此題總分值12分)

如圖,已知二次函數(shù)y212xbxc(c0)的圖象與x軸的正半軸相交于點(diǎn)A、B,與y軸2相交于點(diǎn)C,且OCOAOB.

(1)求c的值;

(2)若△ABC的面積為3,求該二次函數(shù)的解析式;

(3)設(shè)D是(2)中所確定的二次函數(shù)圖象的頂點(diǎn),試問在直線AC上是否存在一點(diǎn)P使△PBD的周長最小?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

21.(本小題總分值15分)

0),將此三角板繞原,0),B(0,3),O(0,如圖,在平面直角坐標(biāo)系中放置始終角三角板,其頂點(diǎn)為A(1點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△ABO.

(1)如圖,一拋物線經(jīng)過點(diǎn)A、B、B,求該拋物線解析式;

(2)設(shè)點(diǎn)P是在第一象限內(nèi)拋物線上一動(dòng)點(diǎn),求使四邊形PBAB的面積到達(dá)最大時(shí)點(diǎn)P的坐標(biāo)及面積的最大值.y3

2B1A16

A1OB12x

22.如圖,已知直線y11x1與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,拋物線yx2bxc與直線交于22A、E兩點(diǎn),與x軸交于B、C兩點(diǎn),且B點(diǎn)坐標(biāo)為(1,0)。

⑴求該拋物線的解析式;⑵動(dòng)點(diǎn)P在軸上移動(dòng),當(dāng)△PAE是直角三角形時(shí),求點(diǎn)P的坐標(biāo)P。⑶在拋物線的對(duì)稱軸上找一點(diǎn)M,使|AMMC|的值最大,求出點(diǎn)M的坐標(biāo)

23.(本小題總分值12分)

如圖,已知拋物線yx4x3交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(1,0).

(1)求拋物線的對(duì)稱軸及點(diǎn)A的坐標(biāo);

(2)在平面直角坐標(biāo)系xoy中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請(qǐng)寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論