版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山東省威海市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
2.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x
B.e-2x
C.-(1/2)e-2x
D.-2e-2x
3.A.A.連續(xù)點(diǎn)
B.
C.
D.
4.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
5.
6.二次積分等于()A.A.
B.
C.
D.
7.
8.
9.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny
B.3y3xlny
C.3xy3x
D.3xy3x-1
10.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
11.微分方程y′-y=0的通解為().
A.y=ex+C
B.y=e-x+C
C.y=Cex
D.y=Ce-x
12.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().
A.-3/4B.0C.3/4D.1
13.
14.
15.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無(wú)水平漸近線,又無(wú)鉛直漸近線
16.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確
17.
18.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
19.A.有一個(gè)拐點(diǎn)B.有兩個(gè)拐點(diǎn)C.有三個(gè)拐點(diǎn)D.無(wú)拐點(diǎn)
20.設(shè)曲線y=x-ex在點(diǎn)(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1
21.
22.
23.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
24.若級(jí)數(shù)在x=-1處收斂,則此級(jí)數(shù)在x=2處
A.發(fā)散B.條件收斂C.絕對(duì)收斂D.不能確定
25.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無(wú)窮小B.低階無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小
26.
27.
28.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.
B.
C.
D.
29.()。A.-2B.-1C.0D.2
30.A.A.1B.2C.3D.4
31.
32.
33.
34.
35.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x36.A.A.e2/3
B.e
C.e3/2
D.e6
37.
38.
39.
40.()。A.e-6
B.e-2
C.e3
D.e6
41.談判是雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件()的過程。
A.達(dá)成協(xié)議B.爭(zhēng)取利益C.避免沖突D.不斷協(xié)商42.A.A.π/4
B.π/2
C.π
D.2π
43.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
44.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)
45.
46.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)
47.
48.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2
49.圖示為研磨細(xì)砂石所用球磨機(jī)的簡(jiǎn)化示意圖,圓筒繞0軸勻速轉(zhuǎn)動(dòng)時(shí),帶動(dòng)筒內(nèi)的許多鋼球一起運(yùn)動(dòng),當(dāng)鋼球轉(zhuǎn)動(dòng)到一定角度α=50。40時(shí),它和筒壁脫離沿拋物線下落,借以打擊礦石,圓筒的內(nèi)徑d=32m。則獲得最大打擊時(shí)圓筒的轉(zhuǎn)速為()。
A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min
50.
A.1
B.
C.0
D.
二、填空題(20題)51.
52.53.54.55.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.
56.
57.
58.
59.
60.
61.
62.微分方程y"-y'=0的通解為______.
63.設(shè)f'(1)=2.則
64.
65.函數(shù)f(x)=2x2-x+1,在區(qū)間[-1,2]上滿足拉格朗日中值定理的ξ=_________。
66.設(shè)z=sin(y+x2),則.
67.
68.
69.70.y'=x的通解為______.三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
72.
73.74.75.證明:76.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.77.求微分方程的通解.78.求曲線在點(diǎn)(1,3)處的切線方程.
79.
80.求微分方程y"-4y'+4y=e-2x的通解.
81.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.82.83.
84.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
85.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.86.
87.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
88.將f(x)=e-2X展開為x的冪級(jí)數(shù).89.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).90.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)91.
92.在曲線上求一點(diǎn)M(x,y),使圖9-1中陰影部分面積S1,S2之和S1+S2最?。?/p>
93.94.計(jì)算95.
96.
97.
98.
99.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過切點(diǎn)A的切線方程.100.五、高等數(shù)學(xué)(0題)101.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
六、解答題(0題)102.
參考答案
1.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
2.D
3.C解析:
4.D由拉格朗日定理
5.C解析:
6.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
7.C
8.B解析:
9.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
z=y3x
是關(guān)于y的冪函數(shù),因此
故應(yīng)選D.
10.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).
可知應(yīng)選C.
11.C所給方程為可分離變量方程.
12.D解析:本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使
可知應(yīng)選D.
13.D解析:
14.A
15.A
16.D
17.C解析:
18.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
19.D
20.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(diǎn)(0,-1)處切線斜率為0,因此選C.
21.C
22.B
23.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
可知應(yīng)選A.
24.C由題意知,級(jí)數(shù)收斂半徑R≥2,則x=2在收斂域內(nèi)部,故其為絕對(duì)收斂.
25.B
26.D
27.B解析:
28.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.
由于在極坐標(biāo)系下積分區(qū)域D可以表示為
0≤θ≤π,0≤r≤a.
因此
故知應(yīng)選A.
29.A
30.A
31.C
32.B
33.B
34.C解析:
35.D
36.D
37.D
38.A解析:
39.C
40.A
41.A解析:談判是指雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件達(dá)成協(xié)議的過程。
42.B
43.C本題考查的知識(shí)點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則
(1)f(x)在點(diǎn)x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見的錯(cuò)誤是選D.這是由于考生沒有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).
但是其逆命題不成立.
44.D解析:
45.D
46.A
47.A解析:
48.D
49.C
50.B
51.
52.
53.
54.155.
本題考查的知識(shí)點(diǎn)為直線方程的求解.
由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).
由直線的點(diǎn)向式方程可知所求直線方程為
56.
57.2x-4y+8z-7=058.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂區(qū)間。由于所給級(jí)數(shù)為不缺項(xiàng)情形,
59.
60.1-m
61.1/21/2解析:
62.y=C1+C2exy=C1+C2ex
解析:本題考查的知識(shí)點(diǎn)為二階級(jí)常系數(shù)線性微分方程的求解.
特征方程為r2-r=0,
特征根為r1=0,r2=1,
方程的通解為y=C1+C2ex.
63.11解析:本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f'(1)=2,可知
64.0<k≤1
65.1/266.2xcos(y+x2)本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.
可以令u=y+x2,得z=sinu,由復(fù)合函數(shù)偏導(dǎo)數(shù)的鏈?zhǔn)椒▌t得
67.y=1/2y=1/2解析:
68.
解析:
69.解析:
70.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.
由于y'=x,可知
71.由等價(jià)無(wú)窮小量的定義可知
72.
73.
74.
75.
76.
77.78.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
79.
80.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
81.函數(shù)的定義域?yàn)?/p>
注意
82.
83.由一階線性微分方程通解公式有
84.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%85.由二重積分物理意義知
86.
則
87.
88.
89.
列表:
說明
90.
91.
92.93.利用洛必達(dá)法則原式,接下去有兩種解法:解法1利用等價(jià)無(wú)窮小代換.
解法2利用洛必達(dá)法則.
本題考查的知識(shí)點(diǎn)為兩個(gè):“”型極限和可變上限積分的求導(dǎo).
對(duì)于可變上(下)限積分形式的極限,如果為“”型或“”型,通常利用洛必達(dá)法則求解,將其轉(zhuǎn)化為不含可變上(下)限積分形式的極限.
94.本題考查的知識(shí)點(diǎn)為定積分的換元積分法.
95.
96.
97.
98.99.由于y=x2,則y'=2x,曲線y=x2上過點(diǎn)A(a,a2)的切線方程為y-a2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子商務(wù)平臺(tái)設(shè)計(jì)服務(wù)合同(3篇)
- 腦外科護(hù)師個(gè)人工作述職報(bào)告(3篇)
- 有關(guān)環(huán)保建議書的資料(5篇)
- 河北省石家莊市(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)人教版隨堂測(cè)試((上下)學(xué)期)試卷及答案
- 湖南省張家界市(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)人教版隨堂測(cè)試(上學(xué)期)試卷及答案
- 2024年染料類項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 上海市市轄區(qū)(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)統(tǒng)編版專題練習(xí)(上學(xué)期)試卷及答案
- 上海市縣(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)人教版隨堂測(cè)試(下學(xué)期)試卷及答案
- 郴州文物百頌作者:湖南省郴州市五嶺大道陳友訓(xùn)
- 2024屆安徽省馬鞍山市高三1月月考(期末)數(shù)學(xué)試題
- 2023年口腔醫(yī)學(xué)期末復(fù)習(xí)-牙周病學(xué)(口腔醫(yī)學(xué))考試歷年真題薈萃帶答案
- 多元智能測(cè)試題及多元智能測(cè)試量表
- 【典型案例】長(zhǎng)江流域浙江的歷史發(fā)展:人民群眾是社會(huì)物質(zhì)財(cái)富的創(chuàng)造者
- 完整版平安基礎(chǔ)性向測(cè)試智商測(cè)試題及問題詳解
- 《疾病與人類健康》
- 車輛技術(shù)檔案范本(一車一檔)
- 人工智能智慧樹知到答案章節(jié)測(cè)試2023年復(fù)旦大學(xué)
- 第五單元《圓》(單元解讀)-六年級(jí)數(shù)學(xué)上冊(cè)人教版
- 初中物理知識(shí)點(diǎn)手冊(cè)大全(挖空+答案)
- JJG 852-2019中子周圍劑量當(dāng)量(率)儀
- GB/T 32131-2015辣根過氧化物酶活性檢測(cè)方法比色法
評(píng)論
0/150
提交評(píng)論