2023屆海南省樂東思源實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第1頁
2023屆海南省樂東思源實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第2頁
2023屆海南省樂東思源實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第3頁
2023屆海南省樂東思源實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第4頁
2023屆海南省樂東思源實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,點B、D、C是⊙O上的點,∠BDC=130°,則∠BOC是()A.100° B.110° C.120° D.130°2.△ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為()A. B. C. D.3.如圖,AB是⊙O的直徑,點C,D在⊙O上.若∠ABD=55°,則∠BCD的度數(shù)為()A.25° B.30° C.35° D.40°4.如圖,在直角坐標(biāo)系中,已知菱形OABC的頂點A(1,2),B(3,3).作菱形OABC關(guān)于y軸的對稱圖形OA′B′C′,再作圖形OA′B′C′關(guān)于點O的中心對稱圖形OA″B″C″,則點C的對應(yīng)點C″的坐標(biāo)是()A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)5.如圖1,在Rt△ABC中,∠B=90°,∠ACB=45°,延長BC到D,使CD=AC,則tan22.5°=()A. B. C. D.6.已知⊙O的直徑為12cm,如果圓心O到一條直線的距離為7cm,那么這條直線與這個圓的位置關(guān)系是()A.相離 B.相切 C.相交 D.相交或相切7.在ABC中,∠C=90°,AB=5,BC=4,以A為圓心,以3為半徑畫圓,則點C與⊙A的位置關(guān)系是()A.在⊙A外 B.在⊙A上 C.在⊙A內(nèi) D.不能確定8.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.平行四邊形 B.菱形 C.等邊三角形 D.等腰直角三角形9.在一個不透明的布袋中裝有紅色.白色玻璃球共40個,除顏色外其他完全相同,小明通過多次摸球試驗后發(fā)現(xiàn),其中摸到白色球的頻率穩(wěn)定在85%左右,則口袋中紅色球可能有().A.34個 B.30個 C.10個 D.6個10.一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2B.x1=1,x2=﹣2C.x1=1,x2=2D.x1=﹣1,x2=211.如圖,,則下列比例式錯誤的是()A. B. C. D.12.如圖,在矩形中,在上,,交于,連結(jié),則圖中與一定相似的三角形是A. B. C. D.和二、填空題(每題4分,共24分)13.已知y與x的函數(shù)滿足下列條件:①它的圖象經(jīng)過(1,1)點;②當(dāng)時,y隨x的增大而減小.寫出一個符合條件的函數(shù):__________.14.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.15.在中,,,,圓在內(nèi)自由移動.若的半徑為1,則圓心在內(nèi)所能到達的區(qū)域的面積為______.16.已知如圖,中,,點在上,,點、分別在邊、上移動,則的周長的最小值是__________.17.把一副普通撲克牌中的13張紅桃牌洗勻后正面向下放在桌子上,從中隨機抽取一張,抽出的牌上的數(shù)字是3的倍數(shù)的概率為______.18.拋物線y=﹣2x2+4x﹣1的對稱軸是直線________

.三、解答題(共78分)19.(8分)如圖,已知點C(0,3),拋物線的頂點為A(2,0),與y軸交于點B(0,1),F(xiàn)在拋物線的對稱軸上,且縱坐標(biāo)為1.點P是拋物線上的一個動點,過點P作PM⊥x軸于點M,交直線CF于點H,設(shè)點P的橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若點P在直線CF下方的拋物線上,用含m的代數(shù)式表示線段PH的長,并求出線段PH的最大值及此時點P的坐標(biāo);(3)當(dāng)PF﹣PM=1時,若將“使△PCF面積為2”的點P記作“巧點”,則存在多個“巧點”,且使△PCF的周長最小的點P也是一個“巧點”,請直接寫出所有“巧點”的個數(shù),并求出△PCF的周長最小時“巧點”的坐標(biāo).20.(8分)已知二次函數(shù)與軸交于、(在的左側(cè))與軸交于點,連接、.(1)如圖1,點是直線上方拋物線上一點,當(dāng)面積最大時,點分別為軸上的動點,連接、、,求的周長最小值;(2)如圖2,點關(guān)于軸的對稱點為點,將拋物線沿射線的方向平移得到新的拋物線,使得交軸于點(在的左側(cè)).將繞點順時針旋轉(zhuǎn)至.拋物線的對稱軸上有—動點,坐標(biāo)系內(nèi)是否存在一點,使得以、、、為頂點的四邊形是菱形,若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.21.(8分)解下列兩題:(1)已知,求的值;(2)已知α為銳角,且2sinα=4cos30°﹣tan60°,求α的度數(shù).22.(10分)如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C.(1)求拋物線的解析式及其頂點Q的坐標(biāo);(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標(biāo);(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.①有一個同學(xué)說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當(dāng)點D運動至點Q時,折線D-E-O的長度最長”,這個同學(xué)的說法正確嗎?請說明理由.②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標(biāo);若不能,請簡要說明理由.23.(10分)如圖,平面直角坐標(biāo)中,把矩形OABC沿對角線OB所在的直線折疊,點A落在點D處,OD與BC交于點E.OA、OC的長是關(guān)于x的一元二次方程x2﹣9x+18=0的兩個根(OA>OC).(1)求A、C的坐標(biāo).(2)直接寫出點E的坐標(biāo),并求出過點A、E的直線函數(shù)關(guān)系式.(3)點F是x軸上一點,在坐標(biāo)平面內(nèi)是否存在點P,使以點O、B、P、F為頂點的四邊形為菱形?若存在請直接寫出P點坐標(biāo);若不存在,請說明理由.24.(10分)(1)2y2+4y=y(tǒng)+2(用因式分解法)(2)x2﹣7x﹣18=0(用公式法)(3)4x2﹣8x﹣3=0(用配方法)25.(12分)如圖,在中,點在邊上,且,已知,.(1)求的度數(shù);(2)我們把有一個內(nèi)角等于的等腰三角形稱為黃金三角形.它的腰長與底邊長的比(或者底邊長與腰長的比)等于黃金比.①寫出圖中所有的黃金三角形,選一個說明理由;②求的長.26.(1)已知如圖1,在中,,,點在內(nèi)部,點在外部,滿足,且.求證:.(2)已知如圖2,在等邊內(nèi)有一點,滿足,,,求的度數(shù).

參考答案一、選擇題(每題4分,共48分)1、A【分析】首先在優(yōu)弧上取點E,連接BE,CE,由點B、D、C是⊙O上的點,∠BDC=130°,即可求得∠E的度數(shù),然后由圓周角定理,即可求得答案.【詳解】解:在優(yōu)弧上取點E,連接BE,CE,如圖所示:

∵∠BDC=130°,

∴∠E=180°-∠BDC=50°,

∴∠BOC=2∠E=100°.

故選A.【點睛】此題考查了圓周角定理以及圓的內(nèi)接四邊形的性質(zhì).此題難度不大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.2、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的長;過C作CM⊥AB,交AB于點M,由垂徑定理可得M為AE的中點,在Rt△ACM中,根據(jù)勾股定理得AM的長,從而得到AE的長.【詳解】解:在Rt△ABC中,

∵AC=3,BC=4,

∴AB==1.

過C作CM⊥AB,交AB于點M,如圖所示,

由垂徑定理可得M為AE的中點,

∵S△ABC=AC?BC=AB?CM,且AC=3,BC=4,AB=1,

∴CM=,

在Rt△ACM中,根據(jù)勾股定理得:AC2=AM2+CM2,即9=AM2+()2,

解得:AM=,

∴AE=2AM=.

故選:C.【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.3、C【詳解】解:連接AD,∵AB是⊙O的直徑,∴∠ADB=90°.∵∠ABD=55°,∴∠BAD=90°﹣55°=35°,∴∠BCD=∠BAD=35°.故選C.【點睛】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.4、A【解析】先找出對應(yīng)點,再用線段順次連接作出圖形,根據(jù)圖形解答即可.【詳解】如圖,.故選A.【點睛】本題考查了軸對稱作圖及中心對稱作圖,熟練掌握軸對稱作圖及中心對稱的性質(zhì)是解答本題的關(guān)鍵,中心對稱的性質(zhì):①關(guān)于中心對稱的兩個圖形能夠完全重合;②關(guān)于中心對稱的兩個圖形,對應(yīng)點的連線都經(jīng)過對稱中心,并且被對稱中心平分.5、B【解析】設(shè)AB=x,求出BC=x,CD=AC=x,求出BD為(x+x),通過∠ACB=45°,CD=AC,可以知道∠D即為22.5°,再解直角三角形求出tanD即可.【詳解】解:設(shè)AB=x,

∵在Rt△ABC中,∠B=90°,∠ACB=45°,

∴∠BAC=∠ACB=45°,

∴AB=BC=x,

由勾股定理得:AC==x,∴AC=CD=x∴BD=BC+CD=x+x,

∴tan22.5°=tanD==故選B.【點睛】本題考查了解直角三角形、勾股定理、等腰三角形的性質(zhì)和判定等知識點,設(shè)出AB=x能求出BD=x+x是解此題的關(guān)鍵.6、A【分析】這條直線與這個圓的位置關(guān)系只要比較圓心到直線的距離與半徑的大小關(guān)系即可.【詳解】∵⊙O的直徑為12cm,∴⊙O的半徑r為6cm,如果圓心O到一條直線的距離d為7cm,d>r,這條直線與這個圓的位置關(guān)系是相離.故選擇:A.【點睛】本題考查直線與圓的位置關(guān)系問題,掌握點到直線的距離與半徑的關(guān)系是關(guān)鍵.7、B【分析】根據(jù)勾股定理求出AC的值,根據(jù)點與圓的位關(guān)系特點,判斷即可.【詳解】解:由勾股定理得:∵AC=半徑=3,∴點C與⊙A的位置關(guān)系是:點C在⊙A上,故選:B.【點睛】本題考查了點與圓的位置關(guān)系定理和勾股定理等知識點的應(yīng)用,點與圓(圓的半徑是r,點到圓心的距離是d)的位置關(guān)系有3種:d=r時,點在圓上;d<r點在圓內(nèi);d>r點在圓外.掌握以上知識是解題的關(guān)鍵.8、B【解析】試題解析:A.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤,不合題意;B.是軸對稱圖形,也是中心對稱圖形,故此選項正確,符合題意;C.是軸對稱圖形,不是中心對稱圖形,故此選項錯誤,不合題意;D.無法確定是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤,不合題意.故選B.9、D【解析】由頻數(shù)=數(shù)據(jù)總數(shù)×頻率計算即可.【詳解】解:∵摸到白色球的頻率穩(wěn)定在85%左右,∴口袋中白色球的頻率為85%,故白球的個數(shù)為40×85%=34個,∴口袋中紅色球的個數(shù)為40-34=6個故選D.【點睛】本題考查了利用頻率估計概率,難度適中.大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率來估計概率,這個固定的近似值就是這個事件的概率.10、D【解析】試題分析:利用因式分解法解方程即可.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故選D.考點:解一元二次方程-因式分解法.11、A【分析】由題意根據(jù)平行線分線段成比例定理寫出相應(yīng)的比例式,即可得出答案.【詳解】解:∵DE∥BC,∴,,,∴A錯誤;故選:A.【點睛】本題考查平行線分線段成比例定理,熟練平行線分線段成比例定理,關(guān)鍵是找準(zhǔn)對應(yīng)關(guān)系,避免錯選其他答案.12、B【解析】試題分析:根據(jù)矩形的性質(zhì)可得∠A=∠D=90°,再由根據(jù)同角的余角相等可得∠AEB=∠DFE,即可得到結(jié)果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故選B.考點:矩形的性質(zhì),相似三角形的判定點評:相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中半徑常見的知識點,一般難度不大,需熟練掌握.二、填空題(每題4分,共24分)13、y=-x+2(答案不唯一)【解析】①圖象經(jīng)過(1,1)點;②當(dāng)x>1時.y隨x的增大而減小,這個函數(shù)解析式為y=-x+2,故答案為y=-x+2(答案不唯一).14、.【詳解】解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.15、24【分析】根據(jù)題意做圖,圓心在內(nèi)所能到達的區(qū)域為△EFG,先求出AB的長,延長BE交AC于H點,作HM⊥AB于M,根據(jù)圓的性質(zhì)可知BH平分∠ABC,故CH=HM,設(shè)CH=x=HM,根據(jù)Rt△AMH中利用勾股定理求出x的值,作EK⊥BC于K點,利用△BEK∽△BHC,求出BK的長,即可求出EF的長,再根據(jù)△EFG∽△BCA求出FG,即可求出△EFG的面積.【詳解】如圖,由題意點O所能到達的區(qū)域是△EFG,連接BE,延長BE交AC于H點,作HM⊥AB于M,EK⊥BC于K,作FJ⊥BC于J.∵,,,∴AB=根據(jù)圓的性質(zhì)可知BH平分∠ABC∴故CH=HM,設(shè)CH=x=HM,則AH=12-x,BM=BC=9,∴AM=15-9=6在Rt△AMH中,AH2=HM2+AM2即AH2=HM2+AM2(12-x)2=x2+62解得x=4.5∵EK∥AC,∴△BEK∽△BHC,∴,即∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG∥AB,EF∥AC,F(xiàn)G∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,故,即解得FG=8∴圓心在內(nèi)所能到達的區(qū)域的面積為FG×EF=×8×6=24,故答案為24.【點睛】此題主要考查相似三角形的判定與性質(zhì)綜合,解題的關(guān)鍵是熟知勾股定理、相似三角形的判定與性質(zhì).16、【分析】作P關(guān)于AO,BO的對稱點E,F,連接EF與OA,OB交于MN,此時△PMN周長最?。贿B接OE,OF,作OG⊥EF,利用勾股定理求出EG,再根據(jù)等腰三角形性質(zhì)可得EF.【詳解】作P關(guān)于AO,BO的對稱點E,F,連接EF與OA,OB交于MN,此時△PMN周長最小;連接OE,OF,作OG⊥EF根據(jù)軸對稱性質(zhì):PM=EM,PN=NF,OE=OP,OE=OF=OP=10,∠EOA=∠AOP,∠BOF=∠POB∵∠AOP+∠POB=60°∴∠EOF=60°×2=120°∴∠OEF=∵OG⊥EF∴OG=OE=∴EG=所以EF=2EG=10由已知可得△PMN的周長=PM+MN+PN=EF=10故答案為:10【點睛】考核知識點:軸對稱,勾股定理.根據(jù)軸對稱求最短路程,根據(jù)勾股定理求線段長度是關(guān)鍵.17、【分析】根據(jù)概率的定義求解即可【詳解】一副普通撲克牌中的13張紅桃牌,牌上的數(shù)字是3的倍數(shù)有4張∴概率為故本題答案為:【點睛】本題考查了隨機事件的概率18、x=1【解析】根據(jù)拋物線y=ax2+bx+c的對稱軸是x=即可求解.【詳解】拋物線y=?2x2+4x?1的對稱軸是直線x=.故答案為:x=1.【點睛】本題考查了二次函數(shù)的對稱軸.熟記二次函數(shù)y=ax2+bx+c的對稱軸:x=是解題的關(guān)鍵.三、解答題(共78分)19、(1)y=(x﹣2)2,即y=x2﹣x+1;(2)m=0時,PH的值最大最大值為2,P(0,2);(3)△PCF的巧點有3個,△PCF的周長最小時,“巧點”的坐標(biāo)為(0,1).【解析】(1)設(shè)拋物線的解析式為y=a(x﹣2)2,將點B的坐標(biāo)代入求得a的值即可;(2)求出直線CF的解析式,求出點P、H的坐標(biāo),構(gòu)建二次函數(shù)即可解決問題;(3)據(jù)三角形的面積公式求得點P到CF的距離,過點C作CG⊥CF,取CG=.則點G的坐標(biāo)為(﹣1,2)或(1,4),過點G作GH∥FC,設(shè)GH的解析式為y=﹣x+b,將點G的坐標(biāo)代入求得直線GH的解析式,將直線GH的解析式與拋物線的解析式,聯(lián)立可得到點P的坐標(biāo),當(dāng)PC+PF最小時,△PCF的周長最小,由PF﹣PM=1可得到PC+PF=PC+PM+1,故此當(dāng)C、P、M在一條直線上時,△PCF的周長最小,然后可求得此時點P的坐標(biāo);【詳解】解:(1)設(shè)拋物線的解析式為y=a(x﹣2)2,將點B的坐標(biāo)代入得:4a=1,解得a=,∴拋物線的解析式為y=(x﹣2)2,即y=x2﹣x+1.(2)設(shè)CF的解析式為y=kx+3,將點F的坐標(biāo)F(2,1)代入得:2k+3=1,解得k=﹣1,∴直線CF的解析式為y=﹣x+3,由題意P(m,m2﹣m+1),H(m,﹣m+3),∴PH=﹣m2+2,∴m=0時,PH的值最大最大值為2,此時P(0,2).(3)由兩點間的距離公式可知:CF=2.設(shè)△PCF中,邊CF的上的高線長為x.則×2x=2,解得x=.過點C作CG⊥CF,取CG=.則點G的坐標(biāo)為(﹣1,2).過點G作GH∥FC,設(shè)GH的解析式為y=﹣x+b,將點G的坐標(biāo)代入得:1+b=2,解得b=1,∴直線GH的解析式為y=﹣x+1,與y=(x﹣2)2聯(lián)立解得:,所以△PCF的一個巧點的坐標(biāo)為(0,1).顯然,直線GH在CF的另一側(cè)時,直線GH與拋物線有兩個交點.∵FC為定點,∴CF的長度不變,∴當(dāng)PC+PF最小時,△PCF的周長最小.∵PF﹣PM=1,∴PC+PF=PC+PM+1,∴當(dāng)C、P、M在一條直線上時,△PCF的周長最?。啻藭rP(0,1).綜上所述,△PCF的巧點有3個,△PCF的周長最小時,“巧點”的坐標(biāo)為(0,1).【點睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求二次函數(shù)的解析式、兩點間的距離公式、垂線段最短等知識,解題的關(guān)鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學(xué)會構(gòu)建二次函數(shù)解決最值問題,學(xué)會構(gòu)建一次函數(shù),利用方程組確定交點坐標(biāo),屬于中考壓軸題.20、(1);(1)存在,理由見解析;,,,,【分析】(1)利用待定系數(shù)法求出A,B,C的坐標(biāo),如圖1中,作PQ∥y軸交BC于Q,設(shè)P,則Q,構(gòu)建二次函數(shù)確定點P的坐標(biāo),作P關(guān)于y軸的對稱點P1(-2,6),作P關(guān)于x軸的對稱點P1(2,-6),的周長最小,其周長等于線段的長,由此即可解決問題.(1)首先求出平移后的拋物線的解析式,確定點H,點C′的坐標(biāo),分三種情形,當(dāng)OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1.當(dāng)OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2.當(dāng)OC′是菱形的對角線時,分別求解即可解決問題.【詳解】解:(1)如圖,,過點作軸平行線,交線段于點,設(shè),=-(m1-2)1+2,∵,∴m=2時,△PBC的面積最大,此時P(2,6)作點關(guān)于軸的對稱點,點關(guān)于軸的對稱點,連接交軸、軸分別為,此時的周長最小,其周長等于線段的長;∵,∴.(1)如圖,∵E(0,-2),平移后的拋物線經(jīng)過E,B,∴拋物線的解析式為y=-x1+bx-2,把B(8,0)代入得到b=2,∴平移后的拋物線的解析式為y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,∴H(1,0),∵△CHB繞點H順時針旋轉(zhuǎn)90°至△C′HB′,∴C′(6,1),當(dāng)OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1,∵OC′=C′S==1,∴可得S1(5,1-),S1(5,1+),∵點C′向左平移一個單位,向下平移得到S1,∴點O向左平移一個單位,向下平移個單位得到K1,∴K1(-1,-),同法可得K1(-1,),當(dāng)OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2,同法可得K3(11,1-),K2(11,1+),當(dāng)OC′是菱形的對角線時,設(shè)S5(5,m),則有51+m1=11+(1-m)1,解得m=-5,∴S5(5,-5),∵點O向右平移5個單位,向下平移5個單位得到S5,∴C′向上平移5個單位,向左平移5個單位得到K5,∴K5(1,7),綜上所述,滿足條件的點K的坐標(biāo)為(-1,-)或(-1,)或(11,1-)或(11,1+)或(1,7).【點睛】本題屬于二次函數(shù)綜合題,考查了二次函數(shù)的性質(zhì),平移變換,翻折變換,菱形的判定和性質(zhì),軸對稱最短問題等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題,學(xué)會用分類討論的思想思考問題.21、(1)6;(2)銳角α=30°【分析】(1)根據(jù)等式,設(shè)a=3k,b=4k,代入所求代數(shù)式化簡求值即可;(2)由cos30°=,tan60°=,化簡即可得出sinα的值,根據(jù)特殊角的三角函數(shù)值即可得.【詳解】解:(1)∵,∴設(shè)a=3k,b=4k,∴==6,故答案為:6;(2)∵2sinα=4cos30°﹣tan60°=4×﹣=,∴sinα=,∴銳角α=30°,故答案為:30°.【點睛】本題考查了化簡求值,特殊角的三角函數(shù)值的應(yīng)用,掌握化簡求值的計算是解題的關(guān)鍵.22、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作圖見解析;(3)①不正確,理由見解析;②不能,理由見解析.【分析】(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中即可確定b、c的值,然后配方后即可確定其頂點坐標(biāo);(2)連接BC,交對稱軸于點P,連接AP、AC.求得C點的坐標(biāo)后然后確定直線BC的解析式,最后求得其與x=2與直線BC的交點坐標(biāo)即為點P的坐標(biāo);(3)①設(shè)D(t,-t2+4t+1),設(shè)折線D-E-O的長度為L,求得L的最大值后與當(dāng)點D與Q重合時L=9+2=11<相比較即可得到答案;②假設(shè)四邊形DCEB為平行四邊形,則可得到EF=DF,CF=BF.然后根據(jù)DE∥y軸求得DF,得到DF>EF,這與EF=DF相矛盾,從而否定是平行四邊形.【詳解】解:(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中,得,解得∴y=-x2+4x+1.∵y=-x2+4x+1=-(x-2)2+9,∴Q(2,9).(2)如圖1,連接BC,交對稱軸于點P,連接AP、AC.∵AC長為定值,∴要使△PAC的周長最小,只需PA+PC最?。唿cA關(guān)于對稱軸x=2的對稱點是點B(1,0),拋物線y=-x2+4x+1與y軸交點C的坐標(biāo)為(0,1).∴由幾何知識可知,PA+PC=PB+PC為最?。O(shè)直線BC的解析式為y=kx+1,將B(1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴當(dāng)x=2時,y=3,∴點P的坐標(biāo)為(2,3).(3)①這個同學(xué)的說法不正確.∵設(shè)D(t,-t2+4t+1),設(shè)折線D-E-O的長度為L,則L=?t2+4t+1+t=?t2+1t+1=?(t?)2+,∵a<0,∴當(dāng)t=時,L最大值=.而當(dāng)點D與Q重合時,L=9+2=11<,∴該該同學(xué)的說法不正確.②四邊形DCEB不能為平行四邊形.如圖2,若四邊形DCEB為平行四邊形,則EF=DF,CF=BF.∵DE∥y軸,∴,即OE=BE=2.1.當(dāng)xF=2.1時,yF=-2.1+1=2.1,即EF=2.1;當(dāng)xD=2.1時,yD=?(2.1?2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF>EF,這與EF=DF相矛盾,∴四邊形DCEB不能為平行四邊形.【點睛】本題考查二次函數(shù)及四邊形的綜合,難度較大.23、(1)A(6,0),C(0,3);(2)E(,3),y=﹣x+;(3)滿足條件的點P坐標(biāo)為(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).【解析】(1)解方程求出OA、OC的長即可解決問題;

(2)首先證明EO=EB,設(shè)EO=EB=x,在Rt△ECO中,EO2=OC2+CE2,構(gòu)建方程求出x,可得點E坐標(biāo),再利用待定系數(shù)法即可解決問題;

(3)分情形分別求解即可解決問題;【詳解】(1)由x2﹣9x+18=0可得x=3或6,∵OA、OC的長是關(guān)于x的一元二次方程x2﹣9x+18=0的兩個根(OA>OC),∴OA=6,OC=3,∴A(6,0),C(0,3).(2)如圖1中,∵OA∥BC,∴∠EBC=∠AOB,根據(jù)翻折不變性可知:∠EOB=∠AOB,∴∠EOB=∠EBO,∴EO=EB,設(shè)EO=EB=x,在Rt△ECO中,∵EO2=OC2+CE2,∴x2=32+(6﹣x)2,解得x=,∴CE=BC﹣EB=6﹣=,∴E(,3),設(shè)直線AE的解析式為y=kx+b,則有,解得,∴直線AE的函數(shù)解析式為y=﹣x+.(3)如圖,OB==3.①當(dāng)OB為菱形的邊時,OF1=OB=BP1=3=,故P1(6﹣3,3),OF3=P3F3=BP3=3,故P3(6+3,3).②當(dāng)OB為菱形的對角線時,∵直線OB的解析式為y=x,∴線段OB的垂直平分線的解析式為y=﹣2x+,可得P2(,3),③當(dāng)OF4問問對角線時,可得P4(6,﹣3)綜上所述,滿足條件的點P坐標(biāo)為(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).【點睛】本題考查的是一次函數(shù)的綜合題,熟練掌握一次函數(shù)是解題的關(guān)鍵.24、(1)y1=﹣2,y2=;(2)x1=9,x2=﹣2;(3)x1=1+,x2=1﹣.【分析】(1)先變形為2y(y+2)﹣(y+2)=0,然后利用因式分解法解方程;(2)先計算出判別式的值,然后利用求根公式法解方程;(3)先把二次項系數(shù)化為1,再兩邊加上一次項系數(shù)一半的平方,配方法得到(x﹣1)2=,然后利用直接開平方法解方程.【詳解】解:(1)2y(y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論