2022衡水中學(xué)地理內(nèi)部學(xué)習(xí)資料專題04 數(shù)列(新高考地區(qū)專用)(解析版)_第1頁(yè)
2022衡水中學(xué)地理內(nèi)部學(xué)習(xí)資料專題04 數(shù)列(新高考地區(qū)專用)(解析版)_第2頁(yè)
2022衡水中學(xué)地理內(nèi)部學(xué)習(xí)資料專題04 數(shù)列(新高考地區(qū)專用)(解析版)_第3頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題04數(shù)列技巧導(dǎo)圖技巧導(dǎo)圖技巧詳講技巧詳講等比數(shù)列前n項(xiàng)和規(guī)律二.單一條件口算結(jié)果-----實(shí)質(zhì)考查等比或等差中項(xiàng)1.無(wú)論是等差還是等比數(shù)列,如果只知道一個(gè)條件是取法確定具體的數(shù)列,那么可以處理為非0的常數(shù)數(shù)列,因?yàn)榉?的常數(shù)數(shù)列即是等差也是等比數(shù)列。(常數(shù)數(shù)列:每一項(xiàng)都是相同的)三.公式法口算通項(xiàng)----an=Sn-Sn-1(n≥2)四.口算錯(cuò)位相減法的結(jié)果五.斐波那數(shù)列---黃金分割數(shù)列---數(shù)列特點(diǎn):0112358132134...三個(gè)數(shù)據(jù)為一組,第一數(shù)據(jù)為偶數(shù),第二、三個(gè)數(shù)據(jù)為奇數(shù)技巧舉證技巧舉證技巧1等比數(shù)列前n項(xiàng)和規(guī)律【例1】(2020·福建省廈門第六中學(xué))已知等比數(shù)列的前項(xiàng)和(為常數(shù)),則()A. B. C.1 D.2【答案】C【解析】技巧法:常規(guī)法:∵等比數(shù)列的前項(xiàng)和(為常數(shù)),∴,,

成等比數(shù)列,∴,解得或∵時(shí),是常數(shù),不成立,故舍去.故選:C【舉一反三】1.(2020·安徽含山(理))已知等比數(shù)列{an}的前n項(xiàng)和Sn=3n+2+3t,則t=()A.1 B.﹣1 C.﹣3 D.﹣9【答案】C【解析】技巧法:Sn=3nx9+3t,3t+9=0,t=﹣3常規(guī)法:因?yàn)榈缺葦?shù)列{an}的前n項(xiàng)和Sn=3n+2+3t,則a1=S1=33+3t=27+3t,a2=S2﹣S1=(34+3t)﹣(33+3t)=54,a3=S3﹣S2=(35+3t)﹣(34+3t)=162,則有(27+3t)×162=542,解得t=﹣3,故選:C.2.(2020·安徽屯溪一中)已知等比數(shù)列的前項(xiàng)和為,則的值為()A. B. C. D.【答案】C【解析】技巧法:常規(guī)法:,,,故選C.技巧2單一條件口算結(jié)果【例2-1】(1)(2020·寧夏高三其他(文))為等差數(shù)列的前項(xiàng)和,若,則().A.-1 B.0 C.1 D.2(2)(2020·山西省長(zhǎng)治市第二中學(xué)校高三月考(理))已知各項(xiàng)為正數(shù)的等比數(shù)列滿足﹐則的值為()A. B. C. D.【答案】(1)B(2)D【解析】(1)技巧法:常規(guī)法:因?yàn)?,所以,故選:B.技巧法:由等比中項(xiàng)的性質(zhì)可得,常規(guī)法:已知各項(xiàng)為正數(shù)的等比數(shù)列滿足,由等比中項(xiàng)的性質(zhì)可得,,由對(duì)數(shù)的運(yùn)算性質(zhì)可得.故選:D.【例2-2】(2020·河南)已知等差數(shù)列,的前項(xiàng)和分別為和,且,則()A. B. C. D.【答案】A【解析】技巧法:常規(guī)法:因?yàn)榈炔顢?shù)列,的前項(xiàng)和分別為和,且,所以可設(shè),,所以,,所以.故選:A【舉一反三】1.設(shè)是等差數(shù)列的前項(xiàng)和,若,則A. B. C. D.【答案】A【解析】,,選A.2.(2020·廣東云浮·)在正項(xiàng)等比數(shù)列中,若,則().A.5 B.6 C.10 D.11【答案】D【解析】技巧法:常規(guī)法:因?yàn)?,且為等比?shù)列,所以,所以.故選:D.3.(2020·浙江寧波)已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,若,,則的值是()A. B. C. D.【答案】C【解析】由等差中項(xiàng)的性質(zhì)可得,,由等比中項(xiàng)的性質(zhì)可得,,因此,.故選:C.4.(2020·全國(guó)高三其他(理))已知數(shù)列,為等差數(shù)列,其前項(xiàng)和分別為,,,則()A. B. C. D.2【答案】D【解析】技巧法:常規(guī)法:根據(jù)等差數(shù)列的性質(zhì)可得,所以可設(shè),.則,,所以.故選:D.技巧3公式法口算通項(xiàng)【例3】(2020·南京市秦淮中學(xué)高三其他)已知數(shù)列的前項(xiàng)和,則數(shù)列的通項(xiàng)公式為______.【答案】【解析】技巧法:常規(guī)法:當(dāng)時(shí),,當(dāng)時(shí),,又適合上式,所以,故答案為:【舉一反三】1.(2020·湖南湘潭·高考模擬(文))已知數(shù)列的前項(xiàng)和公式為,則數(shù)列的通項(xiàng)公式為___.【答案】【解析】技巧法:常規(guī)法:由題意,可知當(dāng)時(shí),;當(dāng)時(shí),.又因?yàn)椴粷M足,所以.2.(2020·山西大同·高三一模(文))已知為數(shù)列的前項(xiàng)和,若,則數(shù)列的通項(xiàng)公式為___________.【答案】【解析】常規(guī)法:為數(shù)列的前項(xiàng)和,①時(shí),②①②,得:,,,數(shù)列的通項(xiàng)公式為.故答案為:.技巧4錯(cuò)位相減法口算結(jié)果【例4】(2020·江西東湖·南昌二中高三其他(文))已知數(shù)列的前項(xiàng)和為,點(diǎn),在函數(shù)的圖象上,數(shù)列滿足,(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.【答案】(1);(2).【解析】(2)數(shù)列滿足,整理得,即,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.所以,故.①,②,①②得:,整理得.常規(guī)法:(1)數(shù)列的前項(xiàng)和為,點(diǎn),在函數(shù)的圖象上,所以,①當(dāng)時(shí),,當(dāng)時(shí),,②,①②得(首項(xiàng)符合通項(xiàng)).故.(2)數(shù)列滿足,整理得,即,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.所以,故.①,②,①②得:,整理得.【舉一反三】1.(2020·河南高三其他(文))已知數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)如果數(shù)列,求數(shù)列的前項(xiàng)和.【答案】(1);(2).【解析】(1)數(shù)列的前項(xiàng)和為,且①.所以:②②①得:.(用技巧法口算結(jié)果,減少計(jì)算量)(2)數(shù)列,所以,所以①,②①②得:,整理得:.(用技巧法口算結(jié)果,減少計(jì)算量)2.(2019·甘肅天水·高考模擬(文))在正項(xiàng)等比數(shù)列{}中,且成等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列{}滿足,求數(shù)列{}的前項(xiàng)和.【答案】(1);(2).【解析】(1)設(shè)正項(xiàng)等比數(shù)列{an}的公比為(,∵∴,所以∴q=2,(舍去)所以;(2)∵,∴,①,②①﹣②得=,∴.(用技巧法口算結(jié)果,減少計(jì)算量).技巧5斐波那數(shù)列【例5】(2020·吉林前郭爾羅斯縣第五中學(xué))“斐波那契”數(shù)列是由十三世紀(jì)意大利數(shù)學(xué)家斐波那契發(fā)現(xiàn)的.?dāng)?shù)列中的一系列數(shù)字常被人們稱為神奇數(shù).具體數(shù)列為:1,1,2,3,5,8,13,…,即從該數(shù)列的第三項(xiàng)開始,每個(gè)數(shù)字都等于前兩個(gè)相鄰數(shù)字之和.已知數(shù)列為“斐波那契”數(shù)列,為數(shù)列的前項(xiàng)和,若,則()A. B. C. D.【答案】C【解析】常規(guī)法:因?yàn)閿?shù)列為“斐波那契”數(shù)列,所以,,所以,,,,,將以上2017個(gè)等式相加可得,,即,所以,所以,所以.故選:C.【舉一反三】1.(2020·河北高三月考)數(shù)列、、、、、、、、、稱為斐波那契數(shù)列,是意大利著名數(shù)學(xué)家斐波那契于年在他撰寫的《算盤全書》中提出的,該數(shù)列的特點(diǎn)是:從第三項(xiàng)起,每一項(xiàng)都等于它前面兩項(xiàng)的和.在該數(shù)列的前項(xiàng)中,偶數(shù)的個(gè)數(shù)為()A. B. C. D.【答案】B【解析】由斐波那契數(shù)列的特點(diǎn),可得此數(shù)列只有第項(xiàng)為偶數(shù),由于,所以前項(xiàng)中偶數(shù)的個(gè)數(shù)為.故選:B.2.(2019·福建高三(理))斐波那契螺旋線,也稱“黃金螺旋線”.如圖,矩形是以斐波那契數(shù)為邊長(zhǎng)的正方形拼接而成的,在每個(gè)正方形中作一個(gè)圓心角為的圓弧,這些圓弧所連成的弧線就是斐波那契螺旋線的一部分.在矩形內(nèi)任取一點(diǎn),該點(diǎn)取自陰影部分的概率為()A. B. C. D.【答案】B【解析】由圖可知各正方形的邊長(zhǎng)為:1,1,2,3,5,8,矩形的面積為:,陰影部分面積為:,所求概率為:故選:B技巧強(qiáng)化技巧強(qiáng)化1.(2020·湖北黃州·黃岡中學(xué)高三其他(理))已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A. B. C. D.【答案】B【解析】由等差數(shù)列的性質(zhì)可得,.故選:B.2.(2020·甘肅高三其他(文))已知等比數(shù)列的前項(xiàng)和為,則a=()A.0 B. C. D.1【答案】C【解析】技巧法:a=-1因?yàn)?,所以,,,,求?故選:C.3.(2020·遼源市田家炳高級(jí)中學(xué)校高二期末(理))斐波那契螺旋線,也稱“黃金螺旋線”,是根據(jù)斐波那契數(shù)列1,1,2,3,5,畫出來(lái)的螺旋曲線.如圖,白色小圓內(nèi)切于邊長(zhǎng)為1的正方形,黑色曲線就是斐波那契螺旋線,它是依次在以1,2,3,5為邊長(zhǎng)的正方形中畫一個(gè)圓心角為的扇形,將其圓弧連接起來(lái)得到的.若在矩形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是()A. B. C. D.【答案】D【解析】因?yàn)榫匦蔚倪呴L(zhǎng)為和5,故矩形面積;又陰影部分的面積為;故在矩形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率.故選:D.4.(2020·安徽高三月考(理))裴波那契數(shù)列(Fibonaccisequence)又稱黃金分割數(shù)列,因?yàn)閿?shù)學(xué)家列昂納多·裴波那契以兔子繁殖為例子引入,故又稱為“兔子數(shù)列”,在數(shù)學(xué)上裴波那契數(shù)列被以下遞推方法定義:數(shù)列滿足:,,現(xiàn)從該數(shù)列的前40項(xiàng)中隨機(jī)抽取一項(xiàng),則能被3整除的概率是()A. B. C. D.【答案】A【解析】裴波那契數(shù)列為:1,1,2,3,5,8,13,21,34,55,89,144,觀察發(fā)現(xiàn)前12項(xiàng)中,第4項(xiàng),第8項(xiàng),第12項(xiàng)都能被3整除.以此類推前40項(xiàng)中,第4項(xiàng),第8項(xiàng),第12項(xiàng),第16項(xiàng),第20項(xiàng),第24項(xiàng),第28項(xiàng),第32項(xiàng),第36項(xiàng),第40項(xiàng),共10項(xiàng),能被3整除.所以能被3整除的概率為.故選A5.(2020·黑龍江哈爾濱市第六中學(xué)校高三(文))意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個(gè)有趣的問題:已知一對(duì)兔子每個(gè)月可以生一對(duì)兔子,而一對(duì)兔子出生后在第二個(gè)月就開始生小兔子.假如沒有發(fā)生死亡現(xiàn)象,那么兔子對(duì)數(shù)依次為:,,,,,,,,,,,……,這就是著名的斐波那契數(shù)列,它的遞推公式是,其中,.若從該數(shù)列的前項(xiàng)中隨機(jī)地抽取一個(gè)數(shù),則這個(gè)數(shù)是偶數(shù)的概率為()A. B. C. D.【答案】B【解析】數(shù)列第1個(gè),第2個(gè)為奇數(shù),故第3個(gè)為偶數(shù),第4個(gè),第5個(gè)為奇數(shù),第6個(gè)為偶數(shù).根據(jù)規(guī)律:共有偶數(shù)個(gè),故.故選:.8.(2020·江西高三(文))意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個(gè)有趣的問題:已知一對(duì)兔子每個(gè)月可以生一對(duì)兔子,而一對(duì)兔子出生后在第二個(gè)月就開始生小兔子.假如沒有發(fā)生死亡現(xiàn)象,那么兔子對(duì)數(shù)依次為:1,1,2,3,5,8,13,21,34,55,89,144……,這就是著名的斐波那契數(shù)列,它的遞推公式是,其中,.若從該數(shù)列的前120項(xiàng)中隨機(jī)地抽取一個(gè)數(shù),則這個(gè)數(shù)是奇數(shù)的概率為()A. B. C. D.【答案】B【解析】由題意可得,該數(shù)列依次每3項(xiàng)中,有2項(xiàng)是奇數(shù),另外1項(xiàng)是偶數(shù)所以前120項(xiàng)中有80項(xiàng)是奇數(shù)所以這個(gè)數(shù)是奇數(shù)的概率為故選:B7.(2020·嘉祥縣第一中學(xué)高三其他)設(shè)數(shù)列,均為等差數(shù)列,它們的前項(xiàng)和分別為,,若,則()A. B. C. D.【答案】B【解析】數(shù)列,均為等差數(shù)列,它們的前項(xiàng)和分別為,,..故選:.8.(2020·合肥一六八中學(xué)高三其他(理))已知數(shù)列為等差數(shù)列,且滿足,則數(shù)列的前11項(xiàng)和為()A.40 B.45 C.50 D.55【答案】D【解析】因?yàn)閿?shù)列為等差數(shù)列,故等價(jià)于,故可得.又根據(jù)等差數(shù)列前項(xiàng)和性質(zhì).故選:D.9.(2019·河南高二月考)兩等差數(shù)列,的前n項(xiàng)和分別為,,且,則A. B. C. D.2【答案】C【解析】由等差數(shù)列的前項(xiàng)和,依題意有,所以,所以,故選C.10.(多選)(2020·福建省永泰縣第一中學(xué)高三月考)斐波那契數(shù)列,又稱黃金分割數(shù)列、兔子數(shù)列,是數(shù)學(xué)家列昂多·斐波那契于1202年提出的數(shù)列.斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,此數(shù)列從第3項(xiàng)開始,每一項(xiàng)都等于前兩項(xiàng)之和,記該數(shù)列為,則的通項(xiàng)公式為()A.B.且C.D.【答案】BC【解析】技巧法:可知選BC常規(guī)法:斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,顯然,,,,,所以且,即B滿足條件;由,所以所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以所以,令,則,所以,所以以為首項(xiàng),為公比的等比數(shù)列,所以,所以;即C滿足條件;故選:BC12.(2020·福建漳州·高三其他(文))若是等差數(shù)列的前項(xiàng)和,且,則__________.【答案】2【解析】因?yàn)?,所以,解?故答案為:13.(2020·陜西渭南·(理))已知數(shù)列{an}的前n項(xiàng)和Sn=n(n+1)+2,其中,則an=_____.【答案】【解析】技巧法:略常規(guī)法:當(dāng)n=1時(shí),S1=a1=4,當(dāng)n≥2時(shí),由Sn=n(n+1)+2,①得Sn﹣1=(n﹣1)n+2,②①﹣②,得an=2n,其中n≥2,所以數(shù)列{an}的通項(xiàng)公式an=.故答案為:.14.(2020·湖北高三月考(理))設(shè)為數(shù)列的前項(xiàng)和,若,則____【答案】【解析】技巧法:略常規(guī)法:當(dāng)時(shí),,即,當(dāng)時(shí),,兩式相減可得,即,即,故數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以.故答案為:15.(2020·浙江高三其他)已知數(shù)列的前n項(xiàng)和,則____________;數(shù)列的通項(xiàng)公式為____________.【答案】2【解析】由題意易得,當(dāng)時(shí),,而,所以.故答案為:2;.16.(2020·浙江高三月考)十三世紀(jì)意大利數(shù)學(xué)家列昂納多·斐波那契從兔子繁殖規(guī)律中發(fā)現(xiàn)了“斐波那契數(shù)列”,斐波那契數(shù)列滿足以下關(guān)系:,,,記其前項(xiàng)和為,設(shè)(為常數(shù)),則______;______.【答案】【解析】因?yàn)殪巢瞧鯏?shù)列滿足,,,∴;;;…;所以,因?yàn)椋蚀鸢笧椋?,?7.(2020·陜西西安中學(xué))斐波那契數(shù)列(Fibonaccisequence),又稱黃金分割數(shù)列,因數(shù)學(xué)家列昂納多斐波那契(LeonardodaFibonacci)以兔子繁殖為例子而引入,故又稱為“兔子數(shù)列”.它是這樣一個(gè)數(shù)列:1,1,2,3,5,8,13,21,34,55……在數(shù)學(xué)上,斐波那契數(shù)列以如下遞推的方法定義:a1=1,a2=1,(n≥3,n∈N*),記其前n項(xiàng)和為Sn,設(shè)a2019=t(t為常數(shù)),則________(用t表示),________(用常數(shù)表示).【答案】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論