版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,交于點,切于點,點在上.若,則為()A. B. C. D.2.已知⊙O的直徑為12cm,如果圓心O到一條直線的距離為7cm,那么這條直線與這個圓的位置關(guān)系是()A.相離 B.相切 C.相交 D.相交或相切3.某同學用一根長為(12+4π)cm的鐵絲,首尾相接圍成如圖的扇形(不考慮接縫),已知扇形半徑OA=6cm,則扇形的面積是()A.12πcm2 B.18πcm2 C.24πcm2 D.36πcm24.某單位進行內(nèi)部抽獎,共準備了100張抽獎券,設(shè)一等獎10個,二等獎20個,三等獎30個.若每張抽獎券獲獎的可能性相同,則1張抽獎券中獎的概率是()A.0.1 B.0.2 C.0.3 D.0.65.如圖,直線y1=kx+b過點A(0,3),且與直線y2=mx交于點P(1,m),則不等式組mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<26.如圖,兩根竹竿和都斜靠在墻上,測得,則兩竹竿的長度之比等于()A. B. C. D.7.用頻率估計概率,可以發(fā)現(xiàn),某種幼樹在一定條件下移植成活的概率為0.9,下列說法正確的是(
)A.種植10棵幼樹,結(jié)果一定是“有9棵幼樹成活”B.種植100棵幼樹,結(jié)果一定是“90棵幼樹成活”和“10棵幼樹不成活”C.種植10n棵幼樹,恰好有“n棵幼樹不成活”D.種植n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.98.在Rt△ABC中,∠C=90°,AB=5,AC=3,則下列等式正確的是()A.sinA= B.cosA= C.tanA= D.cosA=9.如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為()A. B. C. D.10.如圖①,在矩形中,,對角線相交于點,動點由點出發(fā),沿向點運動.設(shè)點的運動路程為,的面積為,與的函數(shù)關(guān)系圖象如圖②所示,則邊的長為().A.3 B.4 C.5 D.6二、填空題(每小題3分,共24分)11.如圖,在中,,,點在邊上,,.點是線段上一動點,當半徑為的與的一邊相切時,的長為____________.12.因式分解:______.13.如圖,一架長為米的梯子斜靠在一豎直的墻上,這時測得,如果梯子的底端外移到,則梯子頂端下移到,這時又測得,那么的長度約為______米.(,,,)14.計算:__________.15.如圖,為的弦,的半徑為5,于點,交于點,且,則弦的長是_____.16.如圖,港口A在觀測站O的正東方向,OA=4.某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為____.
17.若關(guān)于x的方程為一元二次方程,則m=__________.18.如圖,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限的圖象經(jīng)過頂點A(m,2)和CD邊上的點E(n,),則點D的坐標是_____.三、解答題(共66分)19.(10分)近年來,在總書記“既要金山銀山,又要綠水青山”思想的指導下,我國持續(xù)的大面積霧霸天氣得到了較大改善.為了調(diào)查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.對霧霾天氣了解程度的統(tǒng)計圖對霧霾天氣了解程度的統(tǒng)計圖對霧霾天氣了解程度的統(tǒng)計表對霧霾天氣了解程度百分比A.非常了解5%B.比較了解15%C.基本了解45%D.不了解請結(jié)合統(tǒng)計圖表,回答下列問題:(1)本次參與調(diào)查的學生共有______人,______;(2)請補全條形統(tǒng)計圖;(3)根據(jù)調(diào)查結(jié)果,學校準備開展關(guān)于霧霾的知識競賽,某班要從“非常了解”程度的小明和小剛中選一人參加,現(xiàn)設(shè)計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球分別標上數(shù)字1,2,3,4,然后放到一個不透明的袋中充分搖勻,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去,否則小剛?cè)?,請用畫樹狀圖或列表說明這個游戲規(guī)則是否公平.20.(6分)如圖,已知拋物線與軸交于、兩點,,交軸于點,對稱軸是直線.(1)求拋物線的解析式及點的坐標;(2)連接,是線段上一點,關(guān)于直線的對稱點正好落在上,求點的坐標;(3)動點從點出發(fā),以每秒2個單位長度的速度向點運動,過作軸的垂線交拋物線于點,交線段于點.設(shè)運動時間為()秒.若與相似,請求出的值.21.(6分)某商場銷售一種商品,若將50件該商品按標價打八折銷售,比按原標價銷售這些商品少獲利200元.求該商品的標價為多少元;已知該商品的進價為每件12元,根據(jù)市場調(diào)查:若按中標價銷售,該商場每天銷售100件;每漲1元,每天要少賣5件那么漲價后要使該商品每天的銷售利潤最大,應(yīng)將銷售價格定為每件多少元?最大利潤是多少?22.(8分)如圖,四邊形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,將AC繞著點A順時針旋轉(zhuǎn)60°得AE,連接BE,CE.(1)求證:△ADC≌△ABE;(2)求證:(3)若AB=2,點Q在四邊形ABCD內(nèi)部運動,且滿足,直接寫出點Q運動路徑的長度.23.(8分)某商場以每件20元購進一批襯衫,若以每件40元出售,則每天可售出60件,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每漲價1元,商場平均每天可少售出2件,若設(shè)每件襯衫漲價元,回答下列問題:(1)該商場每天售出襯衫件(用含的代數(shù)式表示);(2)求的值為多少時,商場平均每天獲利1050元?(3)該商場平均每天獲利(填“能”或“不能”)達到1250元?24.(8分)已知:AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使AB=AC,連結(jié)AC,過點D作DE⊥AC,垂足為E.(1)求證:DC=BD(2)求證:DE為⊙O的切線25.(10分)一個盒子中裝有兩個紅球,一個白球和一個藍球,這些球除顏色外都相同,從中隨機摸出一個球,記下顏色后放回,再從中隨機摸出一個球,請你用列表法和畫樹狀圖法求兩次摸到的球的顏色能配成紫色的概率(說明:紅色和藍色能配成紫色)26.(10分)計算:
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)切線的性質(zhì)得到∠ODA=90,根據(jù)直角三角形的性質(zhì)求出∠DOA,根據(jù)圓周角定理計算即可.【詳解】∵AD切⊙O于點D,
∴OD⊥AD,
∴∠ODA=90,
∵∠A=40,
∴∠DOA=90-40=50,
由圓周角定理得,∠BCD=∠DOA=25°,
故選:B.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.2、A【分析】這條直線與這個圓的位置關(guān)系只要比較圓心到直線的距離與半徑的大小關(guān)系即可.【詳解】∵⊙O的直徑為12cm,∴⊙O的半徑r為6cm,如果圓心O到一條直線的距離d為7cm,d>r,這條直線與這個圓的位置關(guān)系是相離.故選擇:A.【點睛】本題考查直線與圓的位置關(guān)系問題,掌握點到直線的距離與半徑的關(guān)系是關(guān)鍵.3、A【分析】首先根據(jù)鐵絲長和扇形的半徑求得扇形的弧長,然后根據(jù)弧長公式求得扇形的圓心角,然后代入扇形面積公式求解即可.【詳解】解:∵鐵絲長為(12+4π)cm,半徑OA=6cm,∴弧長為4πcm,∴扇形的圓心角為:=120°,∴扇形的面積為:=12πcm2,故選:A.【點睛】本題考查了扇形的面積的計算,解題的關(guān)鍵是了解扇形的面積公式及弧長公式,難度不大.4、D【分析】直接利用概率公式進行求解,即可得到答案.【詳解】解:∵共準備了100張抽獎券,設(shè)一等獎10個,二等獎20個,三等獎30個.∴1張抽獎券中獎的概率是:=0.6,故選:D.【點睛】本題考查了概率公式:隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù).5、C【分析】先把A點代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m?3,接著解(m?3)x+3>mx?2得x<,然后利用函數(shù)圖象可得不等式組mx>kx+b>mx?2的解集.【詳解】把P(1,m)代入y=kx+3得k+3=m,解得k=m?3,解(m?3)x+3>mx?2得x<,所以不等式組mx>kx+b>mx?2的解集是1<x<.故選:C.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合.6、D【分析】在兩個直角三角形中,分別求出AB、AD即可解決問題.【詳解】根據(jù)題意:在Rt△ABC中,,則,在Rt△ACD中,,則,∴.故選:D.【點睛】本題考查了解直角三角形的應(yīng)用、銳角三角函數(shù)等知識,解題的關(guān)鍵是學會利用參數(shù)解決問題.7、D【解析】A.種植10棵幼樹,結(jié)果可能是“有9棵幼樹成活”,故不正確;B.種植100棵幼樹,結(jié)果可能是“90棵幼樹成活”和“10棵幼樹不成活”,故不正確;C.種植10n棵幼樹,可能有“9n棵幼樹成活”,故不正確;D.種植10n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.9,故正確;故選D.8、B【分析】利用勾股數(shù)求出BC=4,根據(jù)銳角三角函數(shù)的定義,分別計算∠A的三角函數(shù)值即可.【詳解】解:如圖所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A錯誤;cosA=,故B正確;tanA=,故C錯誤;cosA=,故D錯誤;故選:B.【點睛】本題考查了銳角三角函數(shù)的定義,勾股數(shù)的應(yīng)用,掌握銳角三角函數(shù)的定義是解題的關(guān)鍵.9、D【分析】先求出連接兩點所得的所有線段總數(shù),再用列舉法求出取到長度為2的線段條數(shù),由此能求出在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率.【詳解】∵點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,∴連接兩點所得的所有線段總數(shù)n==15條,∵取到長度為2的線段有:FC、AD、EB共3條∴在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為:p=.故選:D【點睛】此題主要考查了正多邊形和圓以及幾何概率,正確利用正六邊形的性質(zhì)得出AD的長是解題關(guān)鍵.10、B【分析】當點在上運動時,面積逐漸增大,當點到達點時,結(jié)合圖象可得面積最大為1,得到與的積為12;當點在上運動時,面積逐漸減小,當點到達點時,面積為0,此時結(jié)合圖象可知點運動路徑長為7,得到與的和為7,構(gòu)造關(guān)于的一元二方程可求解.【詳解】解:當點在上運動時,面積逐漸增大,當點到達點時,面積最大為1.∴,即.當點在上運動時,面積逐漸減小,當點到達點時,面積為0,此時結(jié)合圖象可知點運動路徑長為7,∴.則,代入,得,解得或1,因為,即,所以.故選B.【點睛】本題主要考查動點問題的函數(shù)圖象,解題的關(guān)鍵是分析三角形面積隨動點運動的變化過程,找到分界點極值,結(jié)合圖象得到相關(guān)線段的具體數(shù)值.二、填空題(每小題3分,共24分)11、或或【分析】根據(jù)勾股定理得到AB、AD的值,再分3種情況根據(jù)相似三角形性質(zhì)來求AP的值.【詳解】解:∵在中,,,,∴AD=在Rt△ACB中,,,,∴CB=6+10=16∵AB2=AC2+BC2AB=①當⊙P與BC相切時,設(shè)切點為E,連結(jié)PE,則PE=4,∠AEP=90°∵AD=BD=10∴∠EAP=∠CBA,∠C=∠AEP=90°∴△APE∽△ACB②當⊙P與AC相切時,設(shè)切點為F,連結(jié)PF,則PF=4,∠AFP=90°∵∠C=∠AFP=90°∠CAD=∠FAP∴△CAD∽△FAP③當⊙P與BC相切時,設(shè)切點為G,連結(jié)PG,則PG=4,∠AGP=90°∵∠C=∠PGD=90°∠ADC=∠PDG∴△CAD∽△GPD故答案為:或或5【點睛】本題考查了利用相似三角形的性質(zhì)對應(yīng)邊成比例來證明三角形邊的長.注意分清對應(yīng)邊,不要錯位.12、x(x-5)【分析】直接提公因式,即可得到答案.【詳解】解:,故答案為:.【點睛】本題考查了提公因式法因式分解,解題的關(guān)鍵是熟練掌握因式分解的方法.13、【分析】直接利用銳角三角函數(shù)關(guān)系得出,的長,進而得出答案.【詳解】由題意可得:∵,,,解得:,∵,,,解得:,則,答:的長度約為米.故答案為.【點睛】此題主要考查了解直角三角形的應(yīng)用,正確得出,的長是解題關(guān)鍵.14、【分析】先計算根號、負指數(shù)和sin30°,再運用實數(shù)的加減法運算法則計算即可得出答案.【詳解】原式=,故答案為.【點睛】本題考查的是實數(shù)的運算,中考必考題型,需要熟練掌握實數(shù)的運算法則.15、1【分析】連接AO,得到直角三角形,再求出OD的長,就可以利用勾股定理求解.【詳解】連接,∵半徑是5,,∴,根據(jù)勾股定理,,∴,因此弦的長是1.【點睛】解答此題不僅要用到垂徑定理,還要作出輔助線AO,這是解題的關(guān)鍵.16、1【解析】過點A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,則AB=AD=1.【詳解】如圖,過點A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即該船航行的距離(即AB的長)為1.故答案為1.【點睛】本題考查了解直角三角形的應(yīng)用-方向角問題,難度適中,作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.17、-1【分析】根據(jù)一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫一元二次方程進行分析即可.【詳解】解:依題意得:|m|=1,且m-1≠0,
解得m=-1.
故答案為:-1.【點睛】本題考查了一元二次方程的定義,關(guān)鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是1.18、(3,2)【分析】根據(jù)題意和函數(shù)圖象,可以用含m代數(shù)式表示出n,然后根據(jù)點A和點E都在改反比例函數(shù)圖象上,即可求得m的值,進而求得點E的坐標,從而可以寫出點D的坐標,本題得以解決.【詳解】解:由題意可得,n=m+2,則點E的坐標為(m+2,),∵點A和點E均在反比例函數(shù)y=(k≠0)的圖象上,∴2m=,解得,m=1,∴點E的坐標為(3,),∴點D的坐標為(3,2),故答案為:(3,2).【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.三、解答題(共66分)19、(1)400,35%;(2)條形統(tǒng)計圖見解析;(3)不公平.【分析】(1)用A等級的人數(shù)除以它所占的百分比可得調(diào)查的總?cè)藬?shù),然后用1減去其它等級的百分比即可求得n的值;(3)先計算出D等級的人數(shù),然后補全條形統(tǒng)計圖即可;(4)通過樹狀圖可確定12種等可能的結(jié)果,再找出和為奇數(shù)的結(jié)果有8種,再確定出為奇數(shù)的概率,再確定小明去和小剛?cè)サ母怕剩詈蟊容^即可解答.【詳解】解:(1)由統(tǒng)計圖可知:A等級的人數(shù)為20,所占的百分比為5%則本次參與調(diào)查的學生共有20÷5%=400人;1-5%-15%-45%=35%;(2)由統(tǒng)計圖可知:A等級的人數(shù)所占的百分比為45%D等級的人數(shù)為400×35%=140(人)補全條形統(tǒng)計圖如下:(3)根據(jù)題意畫出樹狀圖如下:可發(fā)現(xiàn)共有12種等可能的結(jié)果且和為奇數(shù)的結(jié)果有8種所以小明去的概率為:小剛?cè)サ母怕蕿椋海桑荆赃@個游戲規(guī)則不公平.【點睛】本題考查了游戲的公平性,先計算每個事件的概率,然后比較概率的大小,概率相等就公平,否則就不公平,這是解答游戲公平性題目的關(guān)鍵.20、(1),點坐標為;(2)F;(3)【分析】(1)先求出點A,B的坐標,將A、B的坐標代入中,即可求解;
(2)確定直線BC的解析式為y=?x+3,根據(jù)點E、F關(guān)于直線x=1對稱,即可求解;
(3)若與相似,則或,即可求解;【詳解】解:(1)∵點、關(guān)于直線對稱,,∴,.代入中,得:,解,∴拋物線的解析式為.∴點坐標為;(2)設(shè)直線的解析式為,則有:,解得,∴直線的解析式為.∵點、關(guān)于直線對稱,又到對稱軸的距離為1,∴.∴點的橫坐標為2,將代入中,得:,∴F(2,1);(3)秒時,.如圖當時∴,∴,.①若,則,即(舍去),或.②若,則,即(舍去),或(舍去)∴.【點睛】主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關(guān)系.21、(1)20;(2)26,980.【分析】(1)設(shè)該商品的標價為x元,根據(jù)按標價的八折銷售該商品50件比按標價銷售該商品50件所獲得的利潤少200元,列方程求解;(2)設(shè)該商品每天的銷售利潤為y元,銷售價格定為每件x元,列出y關(guān)于x的函數(shù)解析式,求出頂點坐標即可得解.【詳解】解:設(shè)該商品的標價為a元,由題意可得:,解得:;答:該商品的標價為20元;設(shè)該商品每天的銷售利潤為y元,銷售價格定為每件x元,由題意可得:;,所以銷售單價為26元時,商品的銷售利潤最大,最大利潤是980元.【點睛】本題考查了一元一次方程的應(yīng)用和運用二次函數(shù)解決實際問題.22、(1)證明見解析;(2)證明見解析;(3).【解析】(1)推出∠DAC=∠BAE,則可直接由SAS證明△ADC≌△ABE;(2)證明△BCE是直角三角形,再證DC=BE,AC=CE即可推出結(jié)論;(3)如圖2,設(shè)Q為滿足條件的點,將AQ繞著點A順時針旋轉(zhuǎn)60度得AF,連接QF,BF,QB,DQ,AF,證△ADQ≌△ABF,由勾股定理的逆定理證∠FBQ=90°,求出∠DQB=150°,確定點Q的路徑為過B,D,C三點的圓上,求出的長即可.【詳解】(1)證明:∵∠CAE=∠DAB=60°,∴∠CAE-∠CAB=∠DAB-∠CAB,∴∠DAC=∠BAE,又∵AD=AB,AC=AE,∴△ADC≌△ABE(SAS);(2)證明:在四邊形ABCD中,∠ADC+∠ABC=360°-∠DAB-∠DCB=270°,∵△ADC≌△ABE,∴∠ADC=∠ABE,CD=BE,∴∠ABC+ABE=∠ABC+∠ADC=270°,∴∠CBE=360°-(∠ABC+ABE)=90°,∴CE2=BE2+BC2,又∵AC=AE,∠CAE=60°,∴△ACE是等邊三角形,∴CE=AC=AE,∴AC2=DC2+BC2;(3)解:如圖2,設(shè)Q為滿足條件的點,將AQ繞著點A順時針旋轉(zhuǎn)60度得AF,連接QF,BF,QB,DQ,AF,則∠DAQ=∠BAF,AQ=QF,△AQF為等邊三角形,又∵AD=AB,∴△ADQ≌△ABF(SAS),∴AQ=FQ,BF=DQ,∵AQ2=BQ2+DQ2,∴FQ2=BQ2+BF2,∴∠FBQ=90°,∴∠AFB+∠AQB=360°-(∠QAF+∠FBQ)=210°,∴∠AQD+∠AQB=210°,∴∠DQB=360°-(∠AQD+∠AQB)=150°,∴點Q的路徑為過B,D,C三點的圓上,如圖2,設(shè)圓心
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年醫(yī)療器械銷售合同協(xié)議書
- 旅游總經(jīng)理聘請合同格式
- 具體落地措施表(高手項目管理者如何激發(fā)團隊成員積極性)
- 基礎(chǔ)格式勞動合同范本
- 全面借款合同合同范本匯編
- 標準裝修合同范文選集
- 廣東省房產(chǎn)買賣合同文本樣本
- 加工協(xié)議書格式及內(nèi)容
- 產(chǎn)業(yè)孵化基地入駐協(xié)議范本
- 設(shè)備維修承攬合同范本
- 八年級英語上冊 Unit 4 Whats the best movie theater(第1課時)說課稿
- 六年級上冊數(shù)學說課稿-《6.百分數(shù)的認識》 人教版
- 人教版道德與法治九年級上冊5.2《凝聚價值追求》說課稿
- 2024年全國注冊消防工程師之消防技術(shù)綜合能力考試重點試題(詳細參考解析)
- Unit 7 Section A(2a-2e)課件人教版2024新教材七年級上冊英語
- 訴求申請書范文
- 《小型水庫雨水情測報和大壩安全監(jiān)測設(shè)施建設(shè)與運行管護技術(shù)指南》
- 建筑施工現(xiàn)場作業(yè)人員應(yīng)急救援培訓內(nèi)容
- 知道網(wǎng)課智慧樹《社會學(湖南應(yīng)用技術(shù)學院)》章節(jié)測試答案
- 2024年中國郵政集團限公司海南省分公司社會招聘124人【重點基礎(chǔ)提升】模擬試題(共500題)附帶答案詳解
- 食品委托配送運輸合同范本共
評論
0/150
提交評論