2022年山東省濟(jì)南市高中名校高三壓軸卷數(shù)學(xué)試卷含解析_第1頁
2022年山東省濟(jì)南市高中名校高三壓軸卷數(shù)學(xué)試卷含解析_第2頁
2022年山東省濟(jì)南市高中名校高三壓軸卷數(shù)學(xué)試卷含解析_第3頁
2022年山東省濟(jì)南市高中名校高三壓軸卷數(shù)學(xué)試卷含解析_第4頁
2022年山東省濟(jì)南市高中名校高三壓軸卷數(shù)學(xué)試卷含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象大致為A. B. C. D.2.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.4.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.5.函數(shù)的部分圖像如圖所示,若,點(diǎn)的坐標(biāo)為,若將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,則的最小值為()A. B. C. D.6.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.7.已知函數(shù).若存在實(shí)數(shù),且,使得,則實(shí)數(shù)a的取值范圍為()A. B. C. D.8.已知為坐標(biāo)原點(diǎn),角的終邊經(jīng)過點(diǎn)且,則()A. B. C. D.9.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.10.若復(fù)數(shù)(為虛數(shù)單位),則()A. B. C. D.11.一艘海輪從A處出發(fā),以每小時24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達(dá)B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點(diǎn)間的距離是()A.6海里 B.6海里 C.8海里 D.8海里12.已知等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則________.14.已知,如果函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍是____________15.已知數(shù)列與均為等差數(shù)列(),且,則______.16.若復(fù)數(shù)(是虛數(shù)單位),則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為拋物線過焦點(diǎn)的弦,已知以為直徑的圓與相切于點(diǎn).(1)求的值及圓的方程;(2)設(shè)為上任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,證明:.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;(2)若曲線與直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為,求的值.19.(12分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.20.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下:空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染嚴(yán)重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.22.(10分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

由題可得函數(shù)的定義域?yàn)?,因?yàn)椋院瘮?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.2.C【解析】

化簡復(fù)數(shù)為、的形式,可以確定對應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對應(yīng)關(guān)系,屬于基礎(chǔ)題.3.C【解析】

作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點(diǎn)睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時注意球心的確定.4.B【解析】

設(shè),則,,因?yàn)?,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.5.B【解析】

根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關(guān)于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點(diǎn)與最低點(diǎn)的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點(diǎn)睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關(guān)鍵,要求熟練掌握函數(shù)圖象之間的變換關(guān)系,屬于簡單題目.6.A【解析】

陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應(yīng)概率.【詳解】因?yàn)殛枖?shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點(diǎn)睛】本題考查實(shí)際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.7.D【解析】

首先對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點(diǎn)睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問題,涉及到的知識點(diǎn)有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結(jié)合,屬于較難題目.8.C【解析】

根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【點(diǎn)睛】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計算能力.9.C【解析】

利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域?yàn)?,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項(xiàng).【詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域?yàn)?若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點(diǎn)睛】本題考查三角函數(shù)圖象變換,同時也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.10.B【解析】

根據(jù)復(fù)數(shù)的除法法則計算,由共軛復(fù)數(shù)的概念寫出.【詳解】,,故選:B【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法計算,共軛復(fù)數(shù)的概念,屬于容易題.11.A【解析】

先根據(jù)給的條件求出三角形ABC的三個內(nèi)角,再結(jié)合AB可求,應(yīng)用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點(diǎn)睛】本題考查正弦定理的實(shí)際應(yīng)用,關(guān)鍵是將給的角度、線段長度轉(zhuǎn)化為三角形的邊角關(guān)系,利用正余弦定理求解.屬于中檔題.12.D【解析】

根據(jù)等差數(shù)列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的計算,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.【點(diǎn)睛】本題考查交集的求法,考查交集定義等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14.【解析】

首先把零點(diǎn)問題轉(zhuǎn)化為方程問題,等價于有三個零點(diǎn),兩側(cè)開方,可得,即有三個零點(diǎn),再運(yùn)用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個零點(diǎn),即零點(diǎn)有,顯然,則有,可得,即有三個零點(diǎn),不妨令,對于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當(dāng)時,,當(dāng)時,,此時函數(shù)若有兩個零點(diǎn),則有,綜上可知,若函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)的零點(diǎn),恰當(dāng)?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點(diǎn)問題,注意恰有三個零點(diǎn)條件的應(yīng)用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.15.20【解析】

設(shè)等差數(shù)列的公差為,由數(shù)列為等差數(shù)列,且,根據(jù)等差中項(xiàng)的性質(zhì)可得,,解方程求出公差,代入等差數(shù)列的通項(xiàng)公式即可求解.【詳解】設(shè)等差數(shù)列的公差為,由數(shù)列為等差數(shù)列知,,因?yàn)?所以,解得,所以數(shù)列的通項(xiàng)公式為,所以.故答案為:【點(diǎn)睛】本題考查等差數(shù)列的概念及其通項(xiàng)公式和等差中項(xiàng);考查運(yùn)算求解能力;等差中項(xiàng)的運(yùn)用是求解本題的關(guān)鍵;屬于基礎(chǔ)題.16.【解析】

直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則計算即可.【詳解】,.【點(diǎn)睛】本題主要考查復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)2,;(2)證明見解析.【解析】

(1)由題意得的方程為,根據(jù)為拋物線過焦點(diǎn)的弦,以為直徑的圓與相切于點(diǎn)..利用拋物線和圓的對稱性,可得,圓心為,半徑為2.(2)設(shè),的方程為,代入的方程,得,根據(jù)直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點(diǎn)N的坐標(biāo)為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設(shè),的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點(diǎn)N的坐標(biāo)為,所以,,故.【點(diǎn)睛】本題主要考查拋物線的定義幾何性質(zhì)以及直線與拋物線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.18.(1)(2)5【解析】

(1)首先消去參數(shù)得到曲線的普通方程,再根據(jù),,得到曲線的極坐標(biāo)方程;(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用直線的參數(shù)方程中參數(shù)的幾何意義得解;【詳解】解:(1)曲線:消去參數(shù)得到:,由,,得所以(2)代入,設(shè),,由直線的參數(shù)方程參數(shù)的幾何意義得:【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程、普通方程的互化,以及直線參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.19.;.【解析】

連接,由三角形相似得,,進(jìn)而得出,,寫出橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),,解得,,因?yàn)辄c(diǎn)在第二象限,所以,,所以,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),所以,即,解得,,即點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)在第二象限,所以,,所以,所以點(diǎn)的坐標(biāo)為,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,當(dāng)且僅當(dāng),即時,有最大值,所以,即面積的取值范圍為.【點(diǎn)睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.20.(1);(2).【解析】試題分析:(1)設(shè)等差數(shù)列滿的首項(xiàng)為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項(xiàng)求和可求得。試題解析:(1)設(shè)等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因?yàn)?,所?所以.21.(1)(2)9060元【解析】

(1)根據(jù)古典概型概率公式和組合數(shù)的計算可得所求概率;(2)任選一天,設(shè)該天的經(jīng)濟(jì)損失為元,分別求出,,,進(jìn)而求得數(shù)學(xué)期望,據(jù)此得出該企業(yè)一個月經(jīng)濟(jì)損失的數(shù)學(xué)期望.【詳解】解:(1)設(shè)為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論