版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.五行學說是華夏民族創(chuàng)造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.2.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.3.點是單位圓上不同的三點,線段與線段交于圓內一點M,若,則的最小值為()A. B. C. D.4.如圖所示,網(wǎng)絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.85.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.6.設為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.7.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.48.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱9.設,則()A. B. C. D.10.已知實數(shù)滿足約束條件,則的最小值是A. B. C.1 D.411.我國古代數(shù)學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.112.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),則的值為______.14.在面積為的中,,若點是的中點,點滿足,則的最大值是______.15.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續(xù)固定相鄰的2個螺栓.則不同的固定螺栓方式的種數(shù)是________.16.設等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數(shù)的軟件,所有用戶都可以通過每天累計的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關”,統(tǒng)計了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運動達人”,步數(shù)在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:運動達人非運動達人總計男3560女26總計100(1)(i)將列聯(lián)表補充完整;(ii)據(jù)此列聯(lián)表判斷,能否有的把握認為“日平均走步數(shù)和性別是否有關”?(2)將頻率視作概率,從該公司的所有人“運動達人”中任意抽取3個用戶,求抽取的用戶中女用戶人數(shù)的分布列及期望.附:18.(12分)中的內角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)把曲線向下平移個單位,然后各點橫坐標變?yōu)樵瓉淼谋兜玫角€(縱坐標不變),設點是曲線上的一個動點,求它到直線的距離的最小值.20.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)的最小值為,求的最小值.21.(12分)已知分別是內角的對邊,滿足(1)求內角的大?。?)已知,設點是外一點,且,求平面四邊形面積的最大值.22.(10分)如圖,在三棱柱中,平面平面,側面為平行四邊形,側面為正方形,,,為的中點.(1)求證:平面;(2)求二面角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
列舉出金、木、水、火、土任取兩個的所有結果共10種,其中2類元素相生的結果有5種,再根據(jù)古典概型概率公式可得結果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.2、D【解析】
可過點S作SF∥OE,交AB于點F,并連接CF,從而可得出∠CSF(或補角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點S作SF∥OE,交AB于點F,連接CF,則∠CSF(或補角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關系,平行線分線段成比例的定理,考查了計算能力,屬于基礎題.3、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.4、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.5、C【解析】
以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當?shù)闹苯亲鴺讼?,是一道基礎題.6、C【解析】
根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎題.7、C【解析】
根據(jù)對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點睛】本題主要考查函數(shù)的對稱性的應用,屬于中檔題.8、D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數(shù)的性質,熟記三角函數(shù)基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.9、D【解析】
結合指數(shù)函數(shù)及對數(shù)函數(shù)的單調性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調性的應用,屬于基礎題.10、B【解析】
作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設,則,易知當直線經(jīng)過點時,z取得最小值,由,解得,所以,所以,故選B.11、B【解析】
將問題轉化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數(shù)列的實際應用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.12、D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,由函數(shù)的解析式求出的值,進而計算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點睛】本題考查分段函數(shù)的性質、對數(shù)運算法則的應用,考查函數(shù)與方程思想、轉化與化歸思想,考查運算求解能力.14、【解析】
由任意三角形面積公式與構建關系表示|AB||AC|,再由已知與平面向量的線性運算、平面向量數(shù)量積的運算轉化,最后由重要不等式求得最值.【詳解】由△ABC的面積為得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①與②的平方和得:|AB||AC|=,又點M是AB的中點,點N滿足,所以,當且僅當時,取等號,即的最大值是為.故答案為:【點睛】本題考查平面向量中由線性運算表示未知向量,進而由重要不等式求最值,屬于中檔題.15、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數(shù)原理,可以求得共有10種方法,利用分步乘法計數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘?shù)臅r候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數(shù)原理和分步乘法計數(shù)原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.16、2【解析】
直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(i)填表見解析(ii)沒有的把握認為“日平均走步數(shù)和性別是否有關”(2)詳見解析【解析】
(1)(i)由已給數(shù)據(jù)可完成列聯(lián)表,(ii)計算出后可得;(2)由列聯(lián)表知從運動達人中抽取1個用戶為女用戶的概率為,的取值為,,由二項分布概率公式計算出各概率得分布列,由期望公式計算期望.【詳解】解(1)(i)運動達人非運動達人總計男352560女142640總計4951100(ii)由列聯(lián)表得所以沒有的把握認為“日平均走步數(shù)和性別是否有關”(2)由列聯(lián)表知從運動達人中抽取1個用戶為女用戶的概率為,.易知所以的分布列為0123.【點睛】本題考查列聯(lián)表,考查獨立性檢驗,考查隨機變量的概率分布列和期望.屬于中檔題.本題難點在于認識到.18、(1)(2)10【解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計算即可;(2)由已知可得,利用余弦定理解出,由已知計算出與,再根據(jù)三角形的面積公式求出結果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡得,,解得或(負值舍去),,,,,,的面積.【點睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應用,考查了二倍角公式的應用,考查了運算能力,屬于基礎題.19、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以得,進而可化簡得出曲線的直角坐標方程;(2)根據(jù)變換得出的普通方程為,可設點的坐標為,利用點到直線的距離公式結合正弦函數(shù)的有界性可得出結果.【詳解】(1)由(為參數(shù)),得,化簡得,故直線的普通方程為.由,得,又,,.所以的直角坐標方程為;(2)由(1)得曲線的直角坐標方程為,向下平移個單位得到,縱坐標不變,橫坐標變?yōu)樵瓉淼谋兜玫角€的方程為,所以曲線的參數(shù)方程為(為參數(shù)).故點到直線的距離為,當時,最小為.【點睛】本題考查曲線的參數(shù)方程、極坐標方程與普通方程的相互轉化,同時也考查了利用橢圓的參數(shù)方程解決點到直線的距離最值的求解,考查計算能力,屬于中等題.20、(1)(2)【解析】
(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京師范大學泰州學院《地理課程設計與評價》2023-2024學年第一學期期末試卷
- 淺談合同管理存在的問題及解決措施
- 2024年數(shù)字化工廠改造合同
- 職業(yè)技能培訓機構收購合同
- 美術教師聘用合同協(xié)議
- 車體廣告委托合同范文
- 代工廠正規(guī)合同范文大全
- 農村村民自建房地產租賃合同
- 入股合同的違約責任
- 幼兒園易拉罐的課程設計
- 中儲糧西安公司社會招聘試題
- 《犬貓牙科學》課件
- 《ehr系統(tǒng)培訓》課件
- 品質部年終總結報告2022
- 庫爾勒香梨行業(yè)分析
- 易燃液體罐車裝卸作業(yè)操作規(guī)程模版
- 六年級上冊必讀書目《童年》閱讀測試題(附答案)
- 頭痛的鑒別診斷
- 機械工程測試技術課后習題
- 人工智能輔助命題
- 麻醉藥相關項目營銷策略方案
評論
0/150
提交評論