版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番;D.為了預(yù)測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預(yù)測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.2.函數(shù)的大致圖象是()A. B.C. D.3.點在曲線上,過作軸垂線,設(shè)與曲線交于點,,且點的縱坐標(biāo)始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為()A.0 B.1 C.2 D.34.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.25.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.6.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.7.圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是()A. B. C. D.8.已知復(fù)數(shù),,則()A. B. C. D.9.拋物線的焦點為,點是上一點,,則()A. B. C. D.10.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對稱 D.函數(shù)圖像關(guān)于對稱11.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.12.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“”的否定是______.14.學(xué)校藝術(shù)節(jié)對同一類的,,,四件參賽作品,只評一件一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:甲說:“或作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“作品獲得一等獎”.若這四位同學(xué)中有且只有兩位說的話是對的,則獲得一等獎的作品是______.15.已知等差數(shù)列的各項均為正數(shù),,且,若,則________.16.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:18.(12分)在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程是,射線與圓的交點為、,與直線的交點為,求線段的長.19.(12分)如圖,四棱錐中,底面,,點在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.20.(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.21.(12分)已知三棱錐中側(cè)面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.22.(10分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)圖像所給的數(shù)據(jù),對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預(yù)測的方法,屬于基礎(chǔ)題.2.A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時,,,所以,故可排除B,C;當(dāng)時,,故可排除D.故選:A.【點睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.3.C【解析】
設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時,,則單調(diào)遞減;當(dāng)時,,則單調(diào)遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導(dǎo)函數(shù)處理零點問題,考查向量的坐標(biāo)運算,考查零點存在性定理的應(yīng)用.4.A【解析】
利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計算,難度容易.5.D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標(biāo)運算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.6.D【解析】
通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導(dǎo)數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.7.C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.8.B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負(fù)問題.9.B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.10.C【解析】
依題意可得,即函數(shù)圖像關(guān)于對稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.11.D【解析】
根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點睛】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.12.B【解析】
把已知點坐標(biāo)代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復(fù)合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.,【解析】
根據(jù)特稱命題的否定為全稱命題得到結(jié)果即可.【詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點睛】本題考查全稱命題與特稱命題的否定關(guān)系,屬于基礎(chǔ)題.14.B【解析】
首先根據(jù)“學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎”,故假設(shè)分別為一等獎,然后判斷甲、乙、丙、丁四位同學(xué)的說法的正確性,即可得出結(jié)果.【詳解】若A為一等獎,則甲、丙、丁的說法均錯誤,不滿足題意;若B為一等獎,則乙、丙的說法正確,甲、丁的說法錯誤,滿足題意;若C為一等獎,則甲、丙、丁的說法均正確,不滿足題意;若D為一等獎,則乙、丙、丁的說法均錯誤,不滿足題意;綜上所述,故B獲得一等獎.【點睛】本題屬于信息題,可根據(jù)題目所給信息來找出解題所需要的條件并得出答案,在做本題的時候,可以采用依次假設(shè)為一等獎并通過是否滿足題目條件來判斷其是否正確.15.【解析】
設(shè)等差數(shù)列的公差為,根據(jù),且,可得,解得,進而得出結(jié)論.【詳解】設(shè)公差為,因為,所以,所以,所以故答案為:【點睛】本題主要考查了等差數(shù)列的通項公式、需熟記公式,屬于基礎(chǔ)題.16.【解析】
由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關(guān)鍵是由三視圖還原原幾何體,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】
(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉(zhuǎn)化為2ab≥1,再構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷單調(diào)性求出最小值可證.【詳解】(1)∵,∴.∴當(dāng)時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當(dāng)且僅當(dāng)時等號成立,∴.令,.則在上單調(diào)遞減.∴.∴當(dāng)時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據(jù)絕對值的定義,合理去掉絕對值號,及合理轉(zhuǎn)化恒成立問題是解答本題的關(guān)鍵,著重考查分析問題和解答問題的能力,以及轉(zhuǎn)化思想的應(yīng)用.18.(1)(2)【解析】
(1)首先將參數(shù)方程轉(zhuǎn)化為普通方程再根據(jù)公式化為極坐標(biāo)方程即可;(2)設(shè),,由,即可求出,則計算可得;【詳解】解:(1)圓的參數(shù)方程(為參數(shù))可化為,∴,即圓的極坐標(biāo)方程為.(2)設(shè),由,解得.設(shè),由,解得.∵,∴.【點睛】本題考查了利用極坐標(biāo)方程求曲線的交點弦長,考查了推理能力與計算能力,屬于中檔題.19.(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標(biāo)系,求得平面的法向量為,平面的法向量,設(shè)二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點,為軸,為軸,為軸,建立坐標(biāo)系,如圖:則:,,,,:,設(shè)平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設(shè)二面角的平面角為即二面角的正弦值為:.【點睛】本題主要考查了求證線面垂直和向量法求二面角,解題關(guān)鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計算能力,屬于中檔題.20.(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)取的中點為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量為,設(shè)與平面所成角為,則,即可得到答案.【詳解】解:(Ⅰ)取的中點為,連結(jié).由是三棱臺得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點,∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結(jié).由是正三角形,且為中點,則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,∴,,.設(shè)平面的一個法向量為.由可得,.令,則,,∴.設(shè)與平面所成角為,則.【點睛】本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學(xué)生的邏輯推理能力與計算求解能力,屬于中檔
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度環(huán)保項目研發(fā)合作協(xié)議
- 2024臨時工合同模板
- 2024年度倉儲合同倉儲物及倉儲期限
- 2024年度軟件定制開發(fā)合同
- 2024年 衛(wèi)星發(fā)射與運營服務(wù)合同
- 2024年商標(biāo)轉(zhuǎn)讓合同注意事項
- 2024年度碳排放權(quán)交易合同交易數(shù)量與交易價格
- 2(2024版)網(wǎng)絡(luò)安全風(fēng)險評估合同
- 2024年度物業(yè)管理合同:住宅小區(qū)物業(yè)管理服務(wù)
- 2024年合作伙伴尋找居間合同 with 合作意向及中介費用的規(guī)定
- 2024-2025學(xué)年上海市普陀區(qū)八年級(上)期中數(shù)學(xué)試卷
- 假期補課協(xié)議書
- 電子商務(wù)支付結(jié)算系統(tǒng)開發(fā)合同
- 服務(wù)質(zhì)量、保證措施
- (必練)廣東省軍隊文職(經(jīng)濟學(xué))近年考試真題試題庫(含答案)
- 含羞草天氣課件
- 2024年安全生產(chǎn)知識競賽考試題庫及答案(共五套)
- 22《鳥的天堂》課件
- 農(nóng)業(yè)灌溉裝置市場環(huán)境與對策分析
- 新疆烏魯木齊市第十一中學(xué)2024-2025學(xué)年八年級上學(xué)期期中道德與法治試卷
- 部編版小學(xué)五年級上冊道法課程綱要(知識清單)
評論
0/150
提交評論