版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若為過(guò)橢圓中心的弦,為橢圓的焦點(diǎn),則△面積的最大值為()A.20 B.30 C.50 D.602.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.3.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.65.已知函,,則的最小值為()A. B.1 C.0 D.6.設(shè)函數(shù)的定義域?yàn)?,命題:,的否定是()A., B.,C., D.,7.甲、乙兩名學(xué)生的六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)的莖葉圖如圖所示.①甲同學(xué)成績(jī)的中位數(shù)大于乙同學(xué)成績(jī)的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績(jī)的方差小于乙同學(xué)成績(jī)的方差.以上說(shuō)法正確的是()A.③④ B.①② C.②④ D.①③④8.若的展開(kāi)式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.19.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.10.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.11.集合的真子集的個(gè)數(shù)為()A.7 B.8 C.31 D.3212.某工廠一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說(shuō)法中錯(cuò)誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個(gè)月的平均收入為萬(wàn)元二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)向量,,且,則_________.14.圓關(guān)于直線的對(duì)稱圓的方程為_(kāi)____.15.的展開(kāi)式中的系數(shù)為_(kāi)___.16.已知數(shù)列滿足:,,若對(duì)任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時(shí),求證:.18.(12分)已知公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)在以為頂點(diǎn)的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.20.(12分)已知函數(shù),函數(shù),其中,是的一個(gè)極值點(diǎn),且.(1)討論的單調(diào)性(2)求實(shí)數(shù)和a的值(3)證明21.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,在表示出面積,由圖象遏制,當(dāng)點(diǎn)A在橢圓的頂點(diǎn)時(shí),此時(shí)面積最大,再結(jié)合橢圓的標(biāo)準(zhǔn)方程,即可求解.【詳解】由題意,設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,則的面積為,當(dāng)最大時(shí),的面積最大,由圖象可知,當(dāng)點(diǎn)A在橢圓的上下頂點(diǎn)時(shí),此時(shí)的面積最大,又由,可得橢圓的上下頂點(diǎn)坐標(biāo)為,所以的面積的最大值為.故選:D.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單的幾何性質(zhì),以及三角形面積公式的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及化歸與轉(zhuǎn)化思想的應(yīng)用.2、B【解析】
依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱,定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).3、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則:在A中,若,,則與相交或平行,故A錯(cuò)誤;在B中,若,,則或,故B錯(cuò)誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),是中檔題.4、C【解析】
根據(jù)列方程,由此求得的值,進(jìn)而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點(diǎn)睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,考查向量模的求法,屬于基礎(chǔ)題.5、B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.6、D【解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因?yàn)椋海侨Q命題,所以其否定是特稱命題,即,.故選:D【點(diǎn)睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.7、A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績(jī)的中位數(shù)為,乙同學(xué)成績(jī)的中位數(shù)為,故①錯(cuò)誤;,,則,故②錯(cuò)誤,③正確;顯然甲同學(xué)的成績(jī)更集中,即波動(dòng)性更小,所以方差更小,故④正確,故選:A【點(diǎn)睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).8、B【解析】
由,進(jìn)而分別求出展開(kāi)式中的系數(shù)及展開(kāi)式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開(kāi)式中的系數(shù)為,展開(kāi)式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.9、A【解析】
利用已知條件畫(huà)出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.10、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.11、A【解析】
計(jì)算,再計(jì)算真子集個(gè)數(shù)得到答案.【詳解】,故真子集個(gè)數(shù)為:.故選:.【點(diǎn)睛】本題考查了集合的真子集個(gè)數(shù),意在考查學(xué)生的計(jì)算能力.12、D【解析】由圖可知,收入最高值為萬(wàn)元,收入最低值為萬(wàn)元,其比是,故項(xiàng)正確;結(jié)余最高為月份,為,故項(xiàng)正確;至月份的收入的變化率為至月份的收入的變化率相同,故項(xiàng)正確;前個(gè)月的平均收入為萬(wàn)元,故項(xiàng)錯(cuò)誤.綜上,故選.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)向量的數(shù)量積的計(jì)算,以及向量的平方,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點(diǎn)睛】本題考查向量的坐標(biāo)計(jì)算,主要考查計(jì)算,屬基礎(chǔ)題.14、【解析】
求出圓心關(guān)于直線的對(duì)稱點(diǎn),即可得解.【詳解】的圓心為,關(guān)于對(duì)稱點(diǎn)設(shè)為,則有:,解得,所以對(duì)稱后的圓心為,故所求圓的方程為.故答案為:【點(diǎn)睛】此題考查求圓關(guān)于直線的對(duì)稱圓方程,關(guān)鍵在于準(zhǔn)確求出圓心關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo).15、28【解析】
將已知式轉(zhuǎn)化為,則的展開(kāi)式中的系數(shù)中的系數(shù),根據(jù)二項(xiàng)式展開(kāi)式可求得其值.【詳解】,所以的展開(kāi)式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開(kāi)式中的系數(shù)為故答案為:28.【點(diǎn)睛】本題考查二項(xiàng)式展開(kāi)式中的某特定項(xiàng)的系數(shù),關(guān)鍵在于將原表達(dá)式化簡(jiǎn)將三項(xiàng)的冪的形式轉(zhuǎn)化為可求的二項(xiàng)式的形式,屬于基礎(chǔ)題.16、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因?yàn)?累加可得.若,注意到當(dāng)時(shí),,不滿足對(duì)任意的正整數(shù)均有.所以.當(dāng)時(shí),證明:對(duì)任意的正整數(shù)都有.當(dāng)時(shí),成立.假設(shè)當(dāng)時(shí)結(jié)論成立,即,則,即結(jié)論對(duì)也成立.由數(shù)學(xué)歸納法可知,對(duì)任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問(wèn)題,需要根據(jù)遞推公式累加求解,同時(shí)注意結(jié)合參數(shù)的范圍問(wèn)題進(jìn)行分析.屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)根據(jù)的導(dǎo)函數(shù)進(jìn)行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時(shí)需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域?yàn)?,,①?dāng)時(shí),由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當(dāng)時(shí),由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當(dāng)時(shí),,所以在上單調(diào)遞增;④當(dāng)時(shí),由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當(dāng)時(shí),欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當(dāng)變化時(shí),,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因?yàn)?,所以,所?即,所以當(dāng)時(shí),成立.【點(diǎn)睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.18、(1)(2)【解析】
(1)判斷公比不為1,運(yùn)用等比數(shù)列的求和公式,解方程可得公比,進(jìn)而得到所求通項(xiàng)公式;(2)求得,運(yùn)用數(shù)列的錯(cuò)位相減法求和,以及等比數(shù)列的求和公式,計(jì)算可得所求和.【詳解】解:(1)設(shè)公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,,可得時(shí),,不成立;當(dāng)時(shí),,即,解得(舍去),則;(2),前項(xiàng)和,,兩式相減可得,化簡(jiǎn)可得.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的錯(cuò)位相減法求和,考查方程思想和運(yùn)算能力,屬于中檔題.19、(Ⅰ)見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié),證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標(biāo)系,平面的法向量為,平面的法向量為,計(jì)算夾角得到答案.【詳解】(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié)因?yàn)闉榱庑?,所?因?yàn)?,所?因?yàn)槎娼菫橹倍娼牵云矫嫫矫?,且平面平面,所以平面所以因?yàn)樗允瞧叫兴倪呅?,所?所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標(biāo)系.設(shè)設(shè)平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.20、(1)在區(qū)間單調(diào)遞增;(2);(3)證明見(jiàn)解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項(xiàng)相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域?yàn)?,且,令,則有,由,可得,可知當(dāng)x變化時(shí),的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域?yàn)?,且,由已知得,即,①由可得,,②?lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當(dāng)時(shí),,,可得在區(qū)間單調(diào)遞增,因此,當(dāng)時(shí),,即,亦即,這時(shí),故可得,取,可得,而,故.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問(wèn)題是近年高考命題的熱點(diǎn),利用導(dǎo)數(shù)證明不等主要方法有兩個(gè),一是比較簡(jiǎn)單的不等式證明,不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值即可;二是較為綜合的不等式證明,要觀察不等式特點(diǎn),結(jié)合已解答的問(wèn)題把要證的不等式變形,并運(yùn)用已證結(jié)論先行放縮,然后再化簡(jiǎn)或者進(jìn)一步利用導(dǎo)數(shù)證明.21、(1)1;(2)證明見(jiàn)解析.【解析】
(1)將不等式化為,求解得出,根據(jù)解集確定正數(shù)的值;(2)利用基本不等式以及不等式的性質(zhì),得出,,,三式相加,即可得證.【詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保公司解除租賃協(xié)議
- 污水處理招投標(biāo)委托書(shū)范例
- 農(nóng)業(yè)物流服務(wù)合同管理指南
- 文化產(chǎn)業(yè)嚴(yán)禁參與盜版侵權(quán)承諾書(shū)
- 公共廣場(chǎng)地磚鋪設(shè)合同
- 建筑加固改造升級(jí)勞務(wù)協(xié)議
- 上海市工業(yè)園區(qū)基礎(chǔ)設(shè)施施工合同
- 醫(yī)療機(jī)構(gòu)用工規(guī)范承諾書(shū)
- 石油開(kāi)采設(shè)備日常養(yǎng)護(hù)管理辦法
- 漁業(yè)捕撈與加工合同
- 網(wǎng)站服務(wù)合同域名續(xù)費(fèi)與維護(hù)
- 單喇叭互通立交設(shè)計(jì)主要技術(shù)問(wèn)題分析
- 實(shí)驗(yàn)幼兒園陪餐記錄表
- 燈具材料樣本確認(rèn)單
- 《鉗工技能訓(xùn)練》實(shí)訓(xùn)教案
- 新加坡科技創(chuàng)新體系架構(gòu)及對(duì)我市科技發(fā)展的啟示
- 中國(guó)卡丁車錦標(biāo)賽暨中國(guó)青少年卡丁車錦標(biāo)賽【比賽規(guī)則】
- 安全教育培訓(xùn)記錄運(yùn)輸車輛安全技術(shù)要求
- Minitab操作教程
- 巖漿礦床實(shí)習(xí)報(bào)告(四川攀枝花釩鈦磁鐵礦礦床)
- 燃?xì)夤艿?流量-流速-口徑計(jì)算公式
評(píng)論
0/150
提交評(píng)論