版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年四川航天職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若一輛汽車每天行駛的路程比原來多19km,則該汽車在8天內行駛的路程s(km)就超過2200km;若它每天行駛的路程比原來少12km,則它行駛同樣的路程s(km)就得花9天多的時間。這輛汽車原來每天行駛的路程(km)的范圍是(
)
A.(259,260)
B.(258,260)
C.(257,260)
D.(256,260)答案:D2.要考察某種品牌的850顆種子的發(fā)芽率,抽取60粒進行實驗.利用隨機數(shù)表抽取種子時,先將850顆種子按001,002,…,850進行編號,如果從隨機數(shù)表第8行第11列的數(shù)1開始向右讀,請你依次寫出最先檢測的4顆種子的編號______,______,______,______.
(下面摘取了隨機數(shù)表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于隨機數(shù)表中第8行的數(shù)字為:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列數(shù)字為1,故產生的第一個數(shù)字為:169,第二個數(shù)字為:555,第三個數(shù)字為:671,第四個數(shù)字為:998(超出編號范圍舍)第五個數(shù)字為:105故為:169,555,671,1053.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C4.設α和β為不重合的兩個平面,給出下列命題:
(1)若α內的兩條相交直線分別平行于β內的兩條直線,則α平行于β;
(2)若α外一條直線l與α內的一條直線平行,則l和α平行;
(3)設α和β相交于直線l,若α內有一條直線垂直于l,則α和β垂直;
(4)直線l與α垂直的充分必要條件是l與α內的兩條直線垂直.
上面命題,真命題的序號是______(寫出所有真命題的序號)答案:由面面平行的判定定理可知,(1)正確.由線面平行的判定定理可知,(2)正確.對于(3)來說,α內直線只垂直于α和β的交線l,得不到其是β的垂線,故也得不出α⊥β.對于(4)來說,l只有和α內的兩條相交直線垂直,才能得到l⊥α.也就是說當l垂直于α內的兩條平行直線的話,l不一定垂直于α.5.用樣本估計總體,下列說法正確的是()A.樣本的結果就是總體的結果B.樣本容量越大,估計就越精確C.樣本容量越小,估計就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計總體時,樣本容量越大,估計就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標準差可以近似地反映總體的波動狀態(tài),數(shù)據的方差越大,說明數(shù)據越不穩(wěn)定,樣本的結果可以粗略的估計總體的結果,但不就是總體的結果.故選B.6.兩條互相平行的直線分別過點A(6,2)和B(-3,-1),并且各自繞著A,B旋轉,如果兩條平行直線間的距離為d.
求:
(1)d的變化范圍;
(2)當d取最大值時兩條直線的方程.答案:(1)方法一:①當兩條直線的斜率不存在時,即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當兩條直線的斜率存在時,設這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當d取最大值時,兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)7.下列各圖象中,哪一個不可能是函數(shù)
y=f(x)的圖象()A.
B.
C.
D.
答案:函數(shù)表示每個輸入值對應唯一輸出值的一種對應關系.選項D,對于x=1時有兩個輸出值與之對應,故不是函數(shù)圖象故選D.8.已知直線過點A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線
B.|x|=2是l的方程
C.l上每一點的坐標都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標的點都在l上答案:C9.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點P在平面α內的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內的軌跡是橢圓的一部分,故選B.10.回歸直線方程必定過點()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線性回歸方程一定過這組數(shù)據的樣本中心點,∴線性回歸方程y=bx+a表示的直線必經過(.x,.y).故選D.11.點P(1,2,2)到原點的距離是()
A.9
B.3
C.1
D.5答案:B12.△ABC所在平面內點O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點P的軌跡一定經過△ABC的()A.重心B.垂心C.內心D.外心答案:設BC的中點為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點P的軌跡一定經過△ABC的重心故選A.13.已知直線l:ax+by=1(ab>0)經過點P(1,4),則l在兩坐標軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經過點P(1,4),∴a+4b=1,故a、b都是正數(shù).故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當且僅當4ba=ab時,取等號,故為9.14.拋擲兩枚骰子各一次,記第一枚骰子擲出的點數(shù)與第二枚骰子擲出的點數(shù)的差為X,則“X>4”表示試驗的結果為()
A.第一枚為5點,第二枚為1點
B.第一枚大于4點,第二枚也大于4點
C.第一枚為6點,第二枚為1點
D.第一枚為4點,第二枚為1點答案:C15.曲線的參數(shù)方程為(t是參數(shù)),則曲線是(
)
A.線段
B.雙曲線的一支
C.圓
D.射線答案:D16.設直線l過點P(-3,3),且傾斜角為56π
(1)寫出直線l的參數(shù)方程;
(2)設此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點,求|PA|?|PB|答案:(1)由于過點(a,b)傾斜角為α的直線的參數(shù)方程為
x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經過點P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因為點A,B都在直線l上,所以可設它們對應的參數(shù)為t1和t1,則點A,B的坐標分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因為t1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.17.雙曲線C的焦點在x軸上,離心率e=2,且經過點P(2,3),則雙曲線C的標準方程是______.答案:設雙曲線C的標準方程x2a2-y2b2=1,∵經過點P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②聯(lián)立方程組并解得
a2=1,b2=3,雙曲線C的標準方程是x2-y23=1,故為:x2-y23=1.18.書架上有5本數(shù)學書,4本物理書,5本化學書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數(shù)學書,4本物理書,5本化學書,∴從中任取一本,不同的取法有5+4+5=14種故選A.19.如圖,平面內有三個向量OA,OB,OC,其中OA與OB的夾角為120°,OA與OC的夾角為30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如圖,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.20.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的圖形是()
A.都是兩個點
B.一條直線和一個圓
C.前者為兩個點,后者是一條直線和一個圓
D.前者是一條直線和一個圓,后者是兩個圓答案:D21.若log
23(x-2)≥0,則x的范圍是______.答案:由log
23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].22.用三段論的形式寫出下列演繹推理.
(1)若兩角是對頂角,則該兩角相等,所以若兩角不相等,則該兩角不是對頂角;
(2)矩形的對角線相等,正方形是矩形,所以,正方形的對角線相等.答案:(1)兩個角是對頂角則兩角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是對頂角.結論(2)每一個矩形的對角線相等,大前提正方形是矩形,小前提正方形的對角線相等.結論23.已知點A(-3,0),B(3,0),動點C到A、B兩點的距離之差的絕對值為2,點C的軌跡與直線
y=x-2交于D、E兩點,求線段DE的中點坐標及其弦長DE.答案:∵|CB|-|CA|=2<23=|AB|,∴點C的軌跡是以A、B為焦點的雙曲線,2a=2,2c=23,∴a=1,c=3,∴b=2,∴點C的軌跡方程為x2-y22=1.把直線
y=x-2代入x2-y22=1化簡可得x2+4x-6=0,△=16-4(-6)=40>0,設D、E兩點的坐標分別為(x1,y1
)、(x2,y2),∴x1+x2=-4,x1?x2=-6.∴線段DE的中點坐標為M(-2,4),DE=1+1?|x1-x2|=2?(x1
+x2)2-4x1
?x2
=216-4(-6)=45.24.如圖,AD是圓內接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于
______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.25.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故為:226.在半徑為1的圓內任取一點,以該點為中點作弦,則所做弦的長度超過3的概率是()A.15B.14C.13D.12答案:如圖,C是弦AB的中點,在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合條件的點必須在半徑為12圓內,則所做弦的長度超過3的概率是P=S小圓S大圓=(12)2ππ=14.故選B.27.已知,求證:.答案:證明略解析:因為是輪換對稱不等式,可考慮由局部證整體.,相加整理得.當且僅當時等號成立.【名師指引】綜合法證明不等式常用兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這一結論,運用時要結合題目條件,有時要適當變形.28.等于()
A.a16
B.a8
C.a4
D.a2答案:C29.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102030.已知:如圖,CD是⊙O的直徑,AE切⊙O于點B,DC的延長線交AB于點A,∠A=20°,則
∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.31.如圖,設a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標系中的圖象如圖,則a,b,c,d的大小順序()
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C32.設是的相反向量,則下列說法一定錯誤的是()
A.∥
B.與的長度相等
C.是的相反向量
D.與一定不相等答案:D33.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據雙曲線的定義,∴點P是以M(-2,0),N(2,0)為兩焦點的雙曲線的右支.故選B.34.凡自然數(shù)都是整數(shù),而
4是自然數(shù)
所以4是整數(shù).以上三段論推理()
A.正確
B.推理形式不正確
C.兩個“自然數(shù)”概念不一致
D.兩個“整數(shù)”概念不一致答案:A35.若隨機變量X的概率分布如下表,則表中a的值為()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D36.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數(shù)列的第10項,則判斷框內的條件是()
A.n≤8?
B.n≤9?
C.n≤10?
D.n≤11?
答案:B37.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()
①若K2的觀測值滿足K2≥6.635,我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺??;
②從獨立性檢驗可知有99%的把握認為吸煙與患病有關系時,我們說某人吸煙,那么他有99%的可能患有肺??;
③從統(tǒng)計量中得知有95%的把握認為吸煙與患肺病有關系,是指有5%的可能性使得推斷出現(xiàn)錯誤.
A.①
B.①③
C.③
D.②答案:C38.一個水平放置的平面圖形,其斜二測直觀圖是一個等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實際面積為______.答案:恢復后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+239.已知D、E、F分別是△ABC的邊BC、CA、AB的中點,且,則下列命題中正確命題的個數(shù)為(
)
①;
②
③;
④
A.1
B.2
C.3
D.4
答案:C40.已知平面向量a,b,c滿足a+b+c=0,且a與b的夾角為135°,c與b的夾角為120°,|c|=2,則|a|=______.答案:∵a+b+c=0∴三個向量首尾相接后,構成一個三角形且a與b的夾角為135°,c與b的夾角為120°,|c|=2,故所得三角形如下圖示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故為:641.在空間直角坐標系中,已知A,B兩點的坐標分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.42.下列命題中正確的是()
A.若,則
B.若,則
.若,則
D.若,則答案:C43.在△ABC中,D為AB上一點,M為△ABC內一點,且滿足AD=34AB,AM=AD+35BC,則△AMD與△ABC的面積比為()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故選D.44.在△ABC中,已知角A,B,C所對的邊依次為a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),則兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c的位置關系是______.答案:依題意,sin2B=sinA?sinC,∴sinAsinB=sinBsinC,即兩直線方程中x的系數(shù)之比與y的系數(shù)之比相等,∴兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c平行或重合.故為:平行或重合.45.已知拋物線C:x2=2py(p>0)的焦點為F,拋物線上一點A的橫坐標為x1(x1>0),過點A作拋物線C的切線l1交x軸于點D,交y軸于點Q,交直線l:y=p2于點M,當|FD|=2時,∠AFD=60°.
(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;
(2)若B位于y軸左側的拋物線C上,過點B作拋物線C的切線l2交直線l1于點P,交直線l于點N,求△PMN面積的最小值,并求取到最小值時的x1值.答案:(1)設A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點A,Q,D的坐標可知:D為線段AQ的中點,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯(lián)立y=x22x-x224y=x12x-x214得到點P(x1+x22,x1x24),聯(lián)立y=x12x-x214y=1得到點M(x12+2x1,1).同理N(x22+2x2,1),設h為點P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2
①設AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當t∈(0,33)時,S(t)單調遞減;當t∈(33,+∞)時,S(t)單調遞增,所以當t=33時,S取到最小值為1639,此時b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時的x1值為233.46.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標準方程,得x26+y24=1,∴這個橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.47.設O為坐標原點,F(xiàn)為拋物線的焦點,A是拋物線上一點,若·=,則點A的坐標是
(
)A.B.C.D.答案:B解析:略48.設點P(t2+2t,1)(t>0),則|OP|(O為坐標原點)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)
2+1≥(2t2×2t)2+1=5,當t=2時取得等號.故選D.49.參數(shù)方程(θ為參數(shù))表示的曲線為()
A.圓的一部分
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分答案:D50.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為()
A.
B.
C.2
D.4答案:A第2卷一.綜合題(共50題)1.如圖,已知雙曲線以長方形ABCD的頂點A,B為左、右焦點,且過C,D兩頂點.若AB=4,BC=3,則此雙曲線的標準方程為______.答案:由題意可得點OA=OB=2,AC=5設雙曲線的標準方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標準方程是x2-y23=1.故為:x2-y23=12.已知x,y之間的一組數(shù)據:
x0123y1357則y與x的回歸方程必經過()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴這組數(shù)據的樣本中心點是(1.5,4)根據線性回歸方程一定過樣本中心點,∴線性回歸方程y=a+bx所表示的直線必經過點(1.5,4)故選C3.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準線,C上的點O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網.
(1)建立適當?shù)淖鴺讼?,求拋物線C的方程;
(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點O作準線的垂線,垂足為A,以OA所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設拋物線C的焦點為F由題意得,P(5,53)…(8分)根據拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當Q為線段PF與拋物線C的交點時,公路總長最小,最小值為9.806千米…(16分)4.如圖:已知圓上的弧
AC=
BD,過C點的圓的切線與BA的延長線交于E點,證明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因為AC=BD,所以∠BCD=∠ABC.又因為EC與圓相切于點C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因為∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)5.某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結論中,正確結論的序號是______
(1)有95%的把握認為“這種血清能起到預防感冒的作用”
(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒
(3)這種血清預防感冒的有效率為95%
(4)這種血清預防感冒的有效率為5%答案:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認為“這種血清能起到預防感冒的作用”950/0僅是指“血清與預防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.故為:(1).6.已知a=(1,2),則|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故為5.7.已知拋物線的頂點在原點,焦點在x軸的正半軸上,F(xiàn)為焦點,A,B,C為拋物線上的三點,且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為______.答案:設向量FA,F(xiàn)B,F(xiàn)C的坐標分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.8.兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當ξ=0時,即A郵箱的信件數(shù)為0,由分步計數(shù)原理知兩封信隨機投入A、B、C三個空郵箱,共有3×3種結果,而滿足條件的A郵箱的信件數(shù)為0的結果數(shù)是2×2,由古典概型公式得到ξ=0時的概率,同理可得ξ=1時,ξ=2時,ξ=3時的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.9.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()
A.3
B.
C.
D.4答案:B10.“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節(jié)相吻合的是()
A.
B.
C.
D.
答案:B11.已知橢圓的焦點是F1、F2,P是橢圓上的一個動點,如果延長F1P到Q,使得|PQ|=|PF2|,那么動點Q的軌跡是______.答案:解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴動點Q到定點F1的距離等于定長2a,故動點Q的軌跡是圓.故:圓.12.通過隨機詢問110名不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:
男女總計愛好402060不愛好203050總計6050110為了判斷愛好該項運動是否與性別有關,由表中的數(shù)據此算得k2≈7.8,因為P(k2≥6.635)≈0.01,所以判定愛好該項運動與性別有關,那么這種判斷出錯的可能性為______.答案:由題意知本題所給的觀測值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴這個結論有0.01=1%的機會說錯,故為:1%13.下列表述正確的是()
①歸納推理是由部分到整體的推理;
②歸納推理是由一般到一般的推理;
③演繹推理是由一般到特殊的推理;
④類比推理是由特殊到一般的推理;
⑤類比推理是由特殊到特殊的推理.
A.①②③
B.②③④
C.②④⑤
D.①③⑤答案:D14.“神六”上天并順利返回,讓越來越多的青少年對航天技術發(fā)生了興趣.某學??萍夹〗M在計算機上模擬航天器變軌返回試驗,設計方案
如圖:航天器運行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為
對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設變軌點為C(x,y),根據題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標為(6,4),|AC|=25,|BC|=4.故為:25、4.15.在平面直角坐標系xOy中,設P(x,y)是橢圓上的一個動點,則S=x+y的最大值是()
A.1
B.2
C.3
D.4答案:B16.設直角三角形的三邊長分別為a,b,c(a<b<c),則“a:b:c=3:4:5”是“a,b,c成等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分又非必要條件答案:∵直角三角形的三邊長分別為a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差數(shù)列.即“a:b:c=3:4:5”?“a,b,c成等差數(shù)列”.∵直角三角形的三邊長分別為a,b,c(a<b<c),a,b,c成等差數(shù)列,∴a2+b2=c22b=a+c,∴a2+a2+
c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差數(shù)列”?“a:b:c=3:4:5”.故選C.17.給出以下四個對象,其中能構成集合的有()
①教2011屆高一的年輕教師;
②你所在班中身高超過1.70米的同學;
③2010年廣州亞運會的比賽項目;
④1,3,5.A.1個B.2個C.3個D.4個答案:解析:因為未規(guī)定年輕的標準,所以①不能構成集合;由于②③④中的對象具備確定性、互異性,所以②③④能構成集合.故選C.18.化簡的結果是()
A.aB.C.a2D.答案:B解析:分析:指數(shù)函數(shù)的性質19.若圓錐的側面展開圖是弧長為2πcm,半徑為2cm的扇形,則該圓錐的體積為______cm3.答案:∵圓錐的側面展開圖的弧長為2πcm,半徑為2cm,故圓錐的底面周長為2πcm,母線長為2cm則圓錐的底面半徑為1,高為1則圓錐的體積V=13?π?12?1=π3.故為:π3.20.經過點M(1,1)且在兩軸上截距相等的直線是______.答案:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為x+y=a,把(1,1)代入所設的方程得:a=2,則所求直線的方程為x+y=2;②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x21.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ
①y=1+2cos2θ
②,因為θ∈R,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).22.已知圓的極坐標方程是ρ=2cosθ,那么該圓的直角坐標方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A23.已知f(x)=,則不等式xf(x)+x≤2的解集是(
)。答案:{x|x≤1}24.若已知中心在坐標原點的橢圓過點(1,233),且它的一條準線方程為x=3,則該橢圓的方程為______.答案:設橢圓的方程是x2a2+y2b2=1,由題設,中心在坐標原點的橢圓過點(1,233),且它的一條準線方程為x=3,∴1a2+43b2=1,a2c=3,又a2=c2+b2三式聯(lián)立可以解得a=3,b=2,c=1或a=7,b=143,c=73故該橢圓的方程為x23+y22=1或x27+y2149=1故應填x23+y22=1或x27+y2149=125.(本小題滿分10分)選修4-1:幾何證明選講
如圖,的角平分線的延長線交它的外接圓于點.
(Ⅰ)證明:;
(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關的定理及性質的應用、三角形相似及性質的應用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因為△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內角,所以∠BAC=90°.【點評】在圓的有關問題中經常要用到弦切角定理、圓周角定理、相交弦定理等結論,解題時要注意根據已知條件進行靈活的選擇,同時三角形相似是證明一些與比例有關問題的的最好的方法.26.已知圓(x+2)2+y2=36的圓心為M,設A為圓上任一點,N(2,0),線段AN的垂直平分線交MA于點P,則動點P的軌跡是()
A.圓
B.橢圓
C.雙曲線
D.拋物線答案:B27.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標系,設P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.28.在畫兩個變量的散點圖時,下面哪個敘述是正確的()
A.預報變量x軸上,解釋變量y軸上
B.解釋變量x軸上,預報變量y軸上
C.可以選擇兩個變量中任意一個變量x軸上
D.可以選擇兩個變量中任意一個變量y軸上答案:B29.“∵四邊形ABCD為矩形,∴四邊形ABCD的對角線相等”,補充以上推理的大前提為()
A.正方形都是對角線相等的四邊形
B.矩形都是對角線相等的四邊形
C.等腰梯形都是對角線相等的四邊形
D.矩形都是對邊平行且相等的四邊形答案:B30.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),則向量2a-3b+4c的坐標為______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故為:(16,0,-19).31.在平面直角坐標系xOy中,若拋物線C:x2=2py(p>0)的焦點為F(q,1),則p+q=______.答案:拋物線C:x2=2py(p>0)的焦點坐標為(0,p2),又已知焦點為為F(q,1),∴q=0,p2=1,故p+q=2,故為2.32.將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD中點,則∠AED的大小為()
A.45°
B.30°
C.60°
D.90°答案:D33.若事件與相互獨立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時發(fā)生,因為二者相互獨立,根據相互獨立事件同時發(fā)生的概率公式得:.34.下列命題中,錯誤的是()
A.平行于同一條直線的兩個平面平行
B.平行于同一個平面的兩個平面平行
C.一個平面與兩個平行平面相交,交線平行
D.一條直線與兩個平行平面中的一個相交,則必與另一個相交答案:A35.拋物線x=14ay2的焦點坐標為()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:拋物線x=14ay2可化為:y2=4ax,它的焦點坐標是(a,0)故選B.36.設a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結論成立.②假設n=k時,結論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當n=1時成立假設不等式當n=k(k≥1)時成立當n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數(shù)n成立37.已知圓C:x2+y2-4x-5=0.
(1)過點(5,1)作圓C的切線,求切線的方程;
(2)若圓C的弦AB的中點P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標準方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設過(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設所求直線與圓交于A,B兩點,其坐標分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因為圓C的弦AB的中點P(3,1),所以(x2+x1)=6,(y2+y1)=2
所以y2-y1x2-x1=-1,故所求直線方程為
x+y-4=0-----------------(14分)38.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標準方程是
______,過這個圓外一點P(2,3)的該圓的切線方程是
______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標準方程是(x-1)2+(y-1)2=1;∵這個圓外一點P(2,3)的該圓的切線,當切線斜率不存在時,顯然x=2符合題意;當切線斜率存在時,設切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=
1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.39.已知兩點分別為A(4,3)和B(7,-1),則這兩點之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.40.設F1、F2分別是橢圓x225+y216=1的左、右焦點,P為橢圓上一點,M是F1P的中點,|OM|=3,則P點到橢圓左焦點距離為______.答案:由題意知,OM是三角形PF1P的中位線,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故為4.41.已知鐳經過100年,質量便比原來減少4.24%,設質量為1的鐳經過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對于函數(shù),當x=100時,y=95.76%=0.9576,結合選項檢驗選項A:x=100,y=0.0424,故排除A選項B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經過100年,質量便比原來減少4.24%,設質量為1的鐳經過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x42.使關于的不等式有解的實數(shù)的最大值是(
)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。43.隨機變量X的概率分布規(guī)律為P(X=n)=(n=1,2,3,4),其中a是常數(shù),則P()的值為()
A.
B.
C.
D.
答案:D44.在某項體育比賽中,七位裁判為一選手打出的分數(shù)如下:
90
89
90
95
93
94
93
去掉一個最高分和一個最低分后,所剩數(shù)的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B45.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實數(shù)λ等于()
A.
B.
C.
D.答案:D46.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()
A.1
B.2
C.-2
D.-1答案:D47.在7塊并排、形狀大小相同的試驗田上進行施化肥量對水稻產量影響的試驗,得到如下表所示的一組數(shù)據(單位:kg).
(1)畫出散點圖;
(2)求y關于x的線性回歸方程;
(3)若施化肥量為38kg,其他情況不變,請預測水稻的產量.答案:(1)根據題表中數(shù)據可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據回歸直線方程系數(shù)的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預測,施化肥量為38kg,其他情況不變時,水稻的產量是438kg.48.直線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為______.答案:由函數(shù)定義知當函數(shù)在x=1處有定義時,直線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為1,若函數(shù)在x=1處有無定義時,直線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為0故線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為0或1故為0或149.若方程x2+ky2=2表示焦點在y軸上的橢圓,那么實數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點在y軸上的橢圓∴2k>2故0<k<1故選D.50.已知函數(shù)①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對于f(x)定義域內的任意一個自變量x1都存在唯一個個自變量x2,使f(x1)f(x2)=3成立的函數(shù)序號是______.答案:根據題意可知:①f(x)=3lnx,x=1時,lnx沒有倒數(shù),不成立;②f(x)=3ecosx,任一自變量f(x)有倒數(shù),但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個自變量,函數(shù)都有倒數(shù),成立;④f(x)=3cosx,當x=2kπ+π2時,函數(shù)沒有倒數(shù),不成立.所以成立的函數(shù)序號為③故為③第3卷一.綜合題(共50題)1.用綜合法或分析法證明:
(1)如果a>0,b>0,則lga+b2≥lga+lgb2(2)求證6+7>22+5.答案:證明:(1)∵a>0,b>0,a+b2≥ab,∴l(xiāng)ga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要證6+7>22+5,只需證明(6+7)
2>(8+5)2,即證明242>
240,也就是證明42>40,上式顯然成立,故原結論成立.2.如圖,在正方體OABC-O1A1B1C1中,棱長為2,E是B1B的中點,則點E的坐標為()
A.(2,2,1)
B.(2,2,)
C.(2,2,)
D.(2,2,)
答案:A3.選做題:如圖,點A、B、C是圓O上的點,且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π4.點(2,0,3)在空間直角坐標系中的位置是在()
A.y軸上
B.xOy平面上
C.xOz平面上
D.第一卦限內答案:C5.函數(shù)y=(43)x,x∈N+是()A.增函數(shù)B.減函數(shù)C.奇函數(shù)D.偶函數(shù)答案:由正整數(shù)指數(shù)函數(shù)不具有奇偶性,可排除C、D;因為函數(shù)y=(43)x,x∈N+的底數(shù)43大于1,所以此函數(shù)是增函數(shù).故選A.6.為了了解某社區(qū)居民是否準備收看奧運會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進行調查,若60~70歲這個年齡段中抽查了8人,那么x為()
A.90
B.120
C.180
D.200答案:D7.直線x3+y4=1與x,y軸所圍成的三角形的周長等于()A.6B.12C.24D.60答案:直線x3+y4=1與兩坐標軸交于A(3,0),B(0,4),∴AB=5,∴△AOB的周長為:OA+OB+AB=3+4+5=12,故選B.8.如圖,PA,PB切⊙O于
A,B兩點,AC⊥PB,且與⊙O相交于
D,若∠DBC=22°,則∠APB═______.答案:連接AB根據弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因為垂直∠DCB=90°根據外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°9.若一個底面為正三角形、側棱與底面垂直的棱柱的三視圖如下圖所示,則這個棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個三棱柱,棱柱的高是4,底面正三角形的高是33,設底面邊長為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B10.若直線l:ax+by=1與圓C:x2+y2=1有兩個不同交點,則點P(a,b)與圓C的位置關系是(
)
A.點在圓上
B.點在圓內
C.點在圓外
D.不能確定答案:C11.如果一個直角三角形的兩條邊長分別是6和8,另一個與它相似的直角三角形邊長分別是4和3及x,那么x的值的個數(shù)為()
A.1個
B.2個
C.2個以上但有限
D.無數(shù)個答案:B12.參數(shù)方程x=sinθ+cosθy=sinθ?cosθ化為普通方程是______.答案:把x=sinθ+cosθy=sinθ?cosθ利用同角三角函數(shù)的基本關系消去參數(shù)θ,化為普通方程可得x2=1+2y,故為x2=1+2y.13.已知圓C:x2+y2=12,直線l:4x+3y=25.
(1)圓C的圓心到直線l的距離為______;
(2)圓C上任意一點A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個幾何概型,試驗發(fā)生包含的事件是從這個圓上隨機的取一個點,對應的圓上整個圓周的弧長,滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點,根據上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點做半徑的垂線,根據弦心距,半徑,弦長之間組成的直角三角形得到符合條件的弧長對應的圓心角是60°根據幾何概型的概率公式得到P=60°360°=16故為:5;1614.某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結論中,正確結論的序號是______
(1)有95%的把握認為“這種血清能起到預防感冒的作用”
(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒
(3)這種血清預防感冒的有效率為95%
(4)這種血清預防感冒的有效率為5%答案:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認為“這種血清能起到預防感冒的作用”950/0僅是指“血清與預防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.故為:(1).15.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點,設,,=,則等于()
A.
B.
C.
D.答案:A16.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則
f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.17.在某項體育比賽中,七位裁判為一選手打出分數(shù)的莖葉圖如圖,去掉一個最高分和一個攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評委為該選手打出的7個分數(shù)數(shù)據為:89,90,90,93,93,94,95.去掉一個最低分89,去掉一個最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.18.某種肥皂原零售價每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價,其余按原價的七折銷售;第二種:全部按原價的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(
)塊肥皂。
A.5
B.2
C.3
D.4答案:D19.位于直角坐標原點的一個質點P按下列規(guī)則移動:質點每次移動一個單位,移動的方向向左或向右,并且向左移動的概率為,向右移動的概率為,則質點P移動五次后位于點(1,0)的概率是()
A.
B.
C.
D.答案:D20.命題“對于正數(shù)a,若a>1,則lg
a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個數(shù)為()A.0B.1C.2D.4答案:原命題“對于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.21.(選做題)
設集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內直接求解情況比較多,考慮補集設全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內∴,∴,∴,∴∴實數(shù)a的取值范圍為.22.有以下四個結論:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,則x=e2;
④ln(lg1)=0.
其中正確的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A23.用反證法證明某命題時,對結論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的反設為()
A.a,b,c中至少有兩個偶數(shù)
B.a,b,c中至少有兩個偶數(shù)或都是奇數(shù)
C.a,b,c都是奇數(shù)
D.a,b,c都是偶數(shù)答案:B24.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.25.先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標有點數(shù)1、2、3、4、5、6),骰子朝上的面的點數(shù)分別為X、Y,則log2XY=1的概率為()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,滿足條件的X、Y有3對而骰子朝上的點數(shù)X、Y共有36對∴概率為336=112故選C.26.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.27.直線l1:x+3=0與直線l2:x+3y-1=0的夾角的大小為______.答案:由于直線l1:x+3=0的斜率不存在,故它的傾斜角為90°,直線l2:x+3y-1=0的斜率為-33,故它的傾斜角為150>,故這兩條直線的夾角為60°,故為60°.28.下列說法中正確的是()
A.若∥,則與向相同
B.若||<||,則<
C.起點不同,但方向相同且模相等的兩個向量相等
D.所有的單位向量都相等答案:C29.如圖給出的是計算1+13+15+…+12013的值的一個程序框圖,圖中空白執(zhí)行框內應填入i=______.答案:∵該程序的功能是計算1+13+15+…+12013的值,最后一次進入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應該填的語句是:i=i+2.故為:i+2.30.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長分別為|a|,|b|,|c|所構成的三角形的形狀是______.答案:直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>
1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.31.下列各組集合,表示相等集合的是()
①M={(3,2)},N={(2,3)};
②M={3,2},N={2,3};
③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不對答案:①中M中表示點(3,2),N中表示點(2,3);②中由元素的無序性知是相等集合;③中M表示一個元素,即點(1,2),N中表示兩個元素分別為1,2.所以表示相等的集合是②.故選B.32.某校對文明班的評選設計了a,b,c,d,e五個方面的多元評價指標,并通過經驗公式樣S=ab+cd+1e來計算各班的綜合得分,S的值越高則評價效果越好,若某班在自測過程中各項指標顯示出0<c<d<e<b<a,則下階段要把其中一個指標的值增加1個單位,而使得S的值增加最多,那么該指標應為()A.aB.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時,S的值越大,而在分子都增加1的前提下,分母越小時,S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個單位會使得S的值增加最多.故選C.33.設F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內,若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F(xiàn)2為端點的線段.故選D.34.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.35.有一批數(shù)量很大的產品,其中次品率是20%,對這批產品進行抽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年湖北客運急救考試題及答案
- 定制服裝供貨服務方案
- 疫情下民辦學校校友支持方案
- 職場健康防疫工作方案
- 彩鋼棚與傳統(tǒng)建筑的對比方案
- 銷售團隊業(yè)績考核方案
- 高職建筑制圖課程設計
- 科研機構新冠病毒曝露應急預案
- 文化遺址保護施工方案的重要性
- 肉類替代品生產結構調整策略
- 設計構成基礎課件 1-點線面
- 2022年高考語文真題試卷(全國乙卷 )講評教學專用課件
- 咯血的介入治療
- 教師專業(yè)成長概述教師專業(yè)發(fā)展途徑PPT培訓課件
- 球磨機安裝專項施工方案
- 閥門壓力等級對照表優(yōu)質資料
- GMP質量管理體系文件 中藥材干燥SOP
- YY/T 0874-2013牙科學旋轉器械試驗方法
- GB/T 25217.10-2019沖擊地壓測定、監(jiān)測與防治方法第10部分:煤層鉆孔卸壓防治方法
- GB/T 21010-2007土地利用現(xiàn)狀分類
- 下庫大壩混凝土溫控措施(二次修改)
評論
0/150
提交評論