版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年安徽林業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.若雙曲線(xiàn)與橢圓x216+y225=1有相同的焦點(diǎn),與雙曲線(xiàn)x22-y2=1有相同漸近線(xiàn),求雙曲線(xiàn)方程.答案:依題意可設(shè)所求的雙曲線(xiàn)的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線(xiàn)與橢圓x216+y225=1有相同的焦點(diǎn)∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線(xiàn)的方程為y23-x26=1…(13分)2.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個(gè)數(shù)據(jù)中位數(shù)為45乙組共9個(gè)數(shù)據(jù)中位數(shù)為46故為45、463.如果一個(gè)直角三角形的兩條邊長(zhǎng)分別是6和8,另一個(gè)與它相似的直角三角形邊長(zhǎng)分別是4和3及x,那么x的值的個(gè)數(shù)為()
A.1個(gè)
B.2個(gè)
C.2個(gè)以上但有限
D.無(wú)數(shù)個(gè)答案:B4.當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為_(kāi)_____.答案:根據(jù)圓的參數(shù)方程的意義,當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).5.已知向量a與b的夾角為π3,|a|=2,則a在b方向上的投影為_(kāi)_____.答案:由投影的定義可得:a在b方向上的投影為:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故為:226.一圓臺(tái)上底半徑為5cm,下底半徑為10cm,母線(xiàn)AB長(zhǎng)為20cm,其中A在上底面上,B在下底面上,從AB中點(diǎn)M,拉一條繩子,繞圓臺(tái)的側(cè)面一周轉(zhuǎn)到B點(diǎn),則這條繩子最短長(zhǎng)為_(kāi)_____cm.答案:畫(huà)出圓臺(tái)的側(cè)面展開(kāi)圖,并還原成圓錐展開(kāi)的扇形,且設(shè)扇形的圓心為O.有圖得:所求的最短距離是MB',設(shè)OA=R,圓心角是α,則由題意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.7.若復(fù)數(shù)z=(2-i)(a-i),(i為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a的值為_(kāi)_____.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若復(fù)數(shù)z=(2-i)(a-i)為純虛數(shù),∴2a-1=0,a+2≠0,∴a=12故為:128.已知邊長(zhǎng)為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因?yàn)檎叫蔚倪呴L(zhǎng)等于1所以|AB+BC+CD|=|AD|
=1故為:19.設(shè)直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),則“a:b:c=3:4:5”是“a,b,c成等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分又非必要條件答案:∵直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差數(shù)列.即“a:b:c=3:4:5”?“a,b,c成等差數(shù)列”.∵直角三角形的三邊長(zhǎng)分別為a,b,c(a<b<c),a,b,c成等差數(shù)列,∴a2+b2=c22b=a+c,∴a2+a2+
c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差數(shù)列”?“a:b:c=3:4:5”.故選C.10.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,
=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.11.點(diǎn)P(1,3,5)關(guān)于平面xoz對(duì)稱(chēng)的點(diǎn)是Q,則向量=()
A.(2,0,10)
B.(0,-6,0)
C.(0,6,0)
D.(-2,0,-10)答案:B12.下表表示y是x的函數(shù),則函數(shù)的值域是
______.
答案:有圖表可知,所有的函數(shù)值構(gòu)成的集合為{2,3,4,5},故函數(shù)的值域?yàn)閧2,3,4,5}.13.“a=2”是“直線(xiàn)ax+2y=0平行于直線(xiàn)x+y=1”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件答案:C14.在曲線(xiàn)(t為參數(shù))上的點(diǎn)是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A15.某校選修乒乓球課程的學(xué)生中,高一年級(jí)有40名,高二年級(jí)有50名,現(xiàn)用分層抽樣的方法在這90名學(xué)生中抽取一個(gè)樣本,已知在高一年級(jí)的學(xué)生中抽取了8名,則在高二年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為_(kāi)_____.答案:∵高一年級(jí)有40名學(xué)生,在高一年級(jí)的學(xué)生中抽取了8名,∴每個(gè)個(gè)體被抽到的概率是
840=15∵高二年級(jí)有50名學(xué)生,∴要抽取50×15=10名學(xué)生,故為:10.16.在5件產(chǎn)品中,有3件一等品,2件二等品.從中任取2件.那么以710為概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,從5件產(chǎn)品中任取2件,共有C52=10種結(jié)果,∵“任取的2件產(chǎn)品都不是一等品”只有1種情況,其概率是110;“任取的2件產(chǎn)品中至少有一件二等品”有C31C21+1種情況,其概率是710;“任取的2件產(chǎn)品中恰有一件一等品”有C31C21種情況,其概率是610;“任取的2件產(chǎn)品在至少有一件一等品”有C31C21+C32種情況,其概率是910;∴以710為概率的事件是“至少有一件二等品”.故為B.17.對(duì)于平面幾何中的命題:“夾在兩條平行線(xiàn)之間的平行線(xiàn)段相等”,在立體幾何中,類(lèi)比上述命題,可以得到命題:“______”.答案:在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類(lèi)比時(shí),我們常用由平面圖形中線(xiàn)的性質(zhì)類(lèi)比推理出空間中面的性質(zhì),故由平面幾何中的命題:“夾在兩條平行線(xiàn)這間的平行線(xiàn)段相等”,我們可以推斷在立體幾何中:“夾在兩個(gè)平行平面間的平行線(xiàn)段相等”這個(gè)命題是一個(gè)真命題.故為:“夾在兩個(gè)平行平面間的平行線(xiàn)段相等”.18.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:D19.求證:三個(gè)兩兩垂直的平面的交線(xiàn)兩兩垂直.答案:設(shè)三個(gè)互相垂直的平面分別為α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三個(gè)平面的公共點(diǎn)為O,如圖所示:在平面γ內(nèi),除點(diǎn)O外,任意取一點(diǎn)M,且點(diǎn)M不在這三個(gè)平面中的任何一個(gè)平面內(nèi),過(guò)點(diǎn)M作MN⊥c,MP⊥b,M、P為垂足,則有平面和平面垂直的性質(zhì)可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.
再由b、c在平面γ內(nèi),可得a⊥b,a⊥c.同理可證,c⊥b,c⊥a,從而證得a、b、c互相垂直.20.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結(jié)CN并延長(zhǎng)交AB于G,因?yàn)锳B∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點(diǎn),所以AC=12a+b,又E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,所以M為AC的中點(diǎn),所以AM=12AC,所以AM=14a+12b.故為:14a+12b.21.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(萬(wàn)元)的幾組統(tǒng)計(jì)數(shù)據(jù):
x23456y2.23.85.56.57.0(1)請(qǐng)?jiān)诮o出的坐標(biāo)系中畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程
y=
bx+
a;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用為多少?
(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對(duì)應(yīng)的點(diǎn)的坐標(biāo),寫(xiě)出點(diǎn)的坐標(biāo),在坐標(biāo)系描出點(diǎn),得到散點(diǎn)圖,(2)∵5i=1xi2=4+9+16+25+36=90
且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線(xiàn)為y=1.23x+0.08.(3)當(dāng)x=10時(shí),y=1.23×10+0.08=12.38,所以估計(jì)當(dāng)使用10年時(shí),維修費(fèi)用約為12.38萬(wàn)元.22.點(diǎn)(1,2)到原點(diǎn)的距離為()
A.1
B.5
C.
D.2答案:C23.與原數(shù)據(jù)單位不一樣的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.方差答案:D24.已知兩點(diǎn)A(2,1),B(3,3),則直線(xiàn)AB的斜率為()
A.2
B.
C.
D.-2答案:A25.(選做題)已知矩陣.122x.的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.答案:矩陣M的特征多項(xiàng)式為.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因?yàn)棣?=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)設(shè)λ2=-1對(duì)應(yīng)的一個(gè)特征向量為α=xy,則-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1則y=-1,所以矩陣M的另一個(gè)特征值為-1,對(duì)應(yīng)的一個(gè)特征向量為α=1-1…(10分)26.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負(fù)根,則a的取值范圍為_(kāi)_____.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開(kāi)口向上,若方程有一正一負(fù)根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.27.某商人將彩電先按原價(jià)提高40%,然后在廣告中寫(xiě)上“大酬賓,八折優(yōu)惠”,結(jié)果是每臺(tái)彩電比原價(jià)多賺了270元,則每臺(tái)彩電原價(jià)是______元.答案:設(shè)每臺(tái)彩電的原價(jià)是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.28.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()
A.小前提錯(cuò)
B.結(jié)論錯(cuò)
C.正確的
D.大前提錯(cuò)答案:C29.經(jīng)過(guò)點(diǎn)P(4,-2)的拋物線(xiàn)的標(biāo)準(zhǔn)方程為()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C30.已知圓C的圓心為(1,1),半徑為1.直線(xiàn)l的參數(shù)方程為x=2+tcosθy=2+tsinθ(t為參數(shù)),且θ∈[0,π3],點(diǎn)P的直角坐標(biāo)為(2,2),直線(xiàn)l與圓C交于A,B兩點(diǎn),求|PA|?|PB||PA|+|PB|的最小值.答案:圓C的普通方程是(x-1)2+(y-1)2=1,將直線(xiàn)l的參數(shù)方程代入并化簡(jiǎn)得t2+2(sinθ+cosθ)t+1=0,由直線(xiàn)參數(shù)方程的幾何意義得|PA|+|PB|=2|sinθ+cosθ|,|PA|?|PB|=1所以|PA|?|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],當(dāng)θ=π4時(shí),|PA|?|PB||PA|+|PB|取得最小值122×1=24,所以|PA|?|PB||PA|+|PB|的最小值是24.31.已知直線(xiàn)y=kx+1與橢圓x25+y2m=1恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍為()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直線(xiàn)y=kx+1恒過(guò)點(diǎn)M(0,1)要使直線(xiàn)y=kx+1與橢圓x25+y2m=1恒有公共點(diǎn),則只要M(0,1)在橢圓的內(nèi)部或在橢圓上從而有m>0m≠505+1m≤1,解可得m≥1且m≠5故選D.32.下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是()
A.①②B.①③C.①④D.②④答案:正方體的三視圖都相同,而三棱臺(tái)的三視圖各不相同,圓錐和正四棱錐的,正視圖和側(cè)視圖相同,所以,正確為D.故選D33.如圖為某公司的組織結(jié)構(gòu)圖,則后勤部的直接領(lǐng)導(dǎo)是______.
答案:有已知中某公司的組織結(jié)構(gòu)圖,可得專(zhuān)家辦公室直接領(lǐng)導(dǎo):財(cái)務(wù)部,后勤部和編輯部三個(gè)部門(mén),故后勤部的直接領(lǐng)導(dǎo)是專(zhuān)家辦公室.故為:專(zhuān)家辦公室.34.下列說(shuō)法正確的是()
A.向量
與向量是共線(xiàn)向量,則A、B、C、D必在同一直線(xiàn)上
B.向量與平行,則與的方向相同或相反
C.向量的長(zhǎng)度與向量的長(zhǎng)度相等
D.單位向量都相等答案:C35.已知x與y之間的一組數(shù)據(jù)是()
x0123y2468則y與x的線(xiàn)性回歸方程y=bx+a必過(guò)點(diǎn)()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根據(jù)所給的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,5)∵線(xiàn)性回歸直線(xiàn)一定過(guò)樣本中心點(diǎn),∴y與x的線(xiàn)性回歸方程y=bx+a必過(guò)點(diǎn)(1.5,5)故選D.36.如圖,A地到火車(chē)站共有兩條路徑L1和L2,據(jù)統(tǒng)計(jì),通過(guò)兩條路徑所用的時(shí)間互不影響,所用時(shí)間落在各時(shí)間段內(nèi)的頻率如下表:所用時(shí)間(分鐘)10~2020~3030~4040~5050~60L1的頻率0.10.20.30.20.2L2的頻率00.10.40.40.1現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于趕往火車(chē)站.
(Ⅰ)為了盡最大可能在各自允許的時(shí)間內(nèi)趕到火車(chē)站,甲和乙應(yīng)如何選擇各自的路徑?
(Ⅱ)用X表示甲、乙兩人中在允許的時(shí)間內(nèi)能趕到火車(chē)站的人數(shù),針對(duì)(Ⅰ)的選擇方案,求X的分布列和數(shù)學(xué)期望.答案:(Ⅰ)Ai表示事件“甲選擇路徑Li時(shí),40分鐘內(nèi)趕到火車(chē)站”,Bi表示事件“乙選擇路徑Li時(shí),50分鐘內(nèi)趕到火車(chē)站”,i=1,2.用頻率估計(jì)相應(yīng)的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲應(yīng)選擇LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙應(yīng)選擇L2.(Ⅱ)A,B分別表示針對(duì)(Ⅰ)的選擇方案,甲、乙在各自允許的時(shí)間內(nèi)趕到火車(chē)站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨(dú)立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.37.=(2,1),=(3,4),則向量在向量方向上的投影為()
A.
B.
C.2
D.10答案:C38.已知點(diǎn)(3,1)和(-4,6)在直線(xiàn)3x-2y+a=0的兩側(cè),則實(shí)數(shù)a的取值范圍是(
)
A.a<-7或a>24
B.a=7或a=24
C.-7<a<24
D.-24<a<7答案:C39.“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)“a=18”時(shí),由基本不等式可得:“對(duì)任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對(duì)任意的正數(shù)x,2x+ax≥1”為真命題;而“對(duì)任意的正數(shù)x,2x+ax≥1的”時(shí),可得“a≥18”即“對(duì)任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A40.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的()
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C41.已知鐳經(jīng)過(guò)100年,質(zhì)量便比原來(lái)減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過(guò)x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對(duì)于函數(shù),當(dāng)x=100時(shí),y=95.76%=0.9576,結(jié)合選項(xiàng)檢驗(yàn)選項(xiàng)A:x=100,y=0.0424,故排除A選項(xiàng)B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經(jīng)過(guò)100年,質(zhì)量便比原來(lái)減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過(guò)x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x42.棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點(diǎn),則直線(xiàn)EF被球O截得的線(xiàn)段長(zhǎng)為()
A.
B.1
C.1+
D.答案:D43.已知正三角形的外接圓半徑為63cm,求它的邊長(zhǎng).答案:設(shè)正三角形的邊長(zhǎng)為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長(zhǎng)為18cm.44.已知x與y之間的一組數(shù)據(jù):
x
0
1
2
3
y
2
4
6
8
則y與x的線(xiàn)性回歸方程為y=bx+a必過(guò)點(diǎn)()
A.(1.5,4)
B.(1.5,5)
C.(1,5)
D.(2,5)答案:B45.已知F1(-8,3),F(xiàn)2(2,3),動(dòng)點(diǎn)P滿(mǎn)足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿(mǎn)足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線(xiàn).故為一條射線(xiàn).46.在極坐標(biāo)系中,若點(diǎn)A(ρ0,π3)(ρ0≠0)是曲線(xiàn)ρ=2cosθ上的一點(diǎn),則ρ0=______.答案:∵點(diǎn)A(ρ0,π3)(ρ0≠0)是曲線(xiàn)ρ=2cosθ上的一點(diǎn),∴ρ0=2cosπ3.∴ρ0=2×12=1.故為:1.47.已知雙曲線(xiàn)的頂點(diǎn)到漸近線(xiàn)的距離為2,焦點(diǎn)到漸近線(xiàn)的距離為6,則該雙曲線(xiàn)的離心率為(
)
A.
B.
C.3
D.2答案:C48.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(xiàn)(
)。答案:圓,雙曲線(xiàn)49.已知P為拋物線(xiàn)y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線(xiàn)的準(zhǔn)線(xiàn)距離之和的最小值是()
A.2-1
B.2-2
C.-1
D.-2答案:C50.求由曲線(xiàn)圍成的圖形的面積.答案:面積為解析:當(dāng),時(shí),方程化成,即.上式表示圓心在,半徑為的圓.所以,當(dāng),時(shí),方程表示在第一象限的部分以及軸,軸負(fù)半軸上的點(diǎn),.同理,當(dāng),時(shí),方程表示在第四象限的部分以及軸負(fù)半軸上的點(diǎn);當(dāng),時(shí),方程表示圓在第二象限的部分以及軸負(fù)半軸上的點(diǎn);當(dāng),時(shí),方程表示圓在第三象限部分.以上合起來(lái)構(gòu)成如圖所示的圖形,面積為.第2卷一.綜合題(共50題)1.直線(xiàn)y=2x與直線(xiàn)x+y=3的交點(diǎn)坐標(biāo)是
______.答案:聯(lián)立兩直線(xiàn)方程得y=2xx+y=3,解得x=1y=2所以直線(xiàn)y=2x與直線(xiàn)x+y=3的交點(diǎn)坐標(biāo)是(1,2)故為(1,2).2.將一個(gè)總體分為A、B、C三層,其個(gè)體數(shù)之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應(yīng)從C中抽取樣本的個(gè)數(shù)為_(kāi)_____個(gè).答案:由分層抽樣的定義可得應(yīng)從B中抽取的個(gè)體數(shù)為180×25+3+2=36,故為:36.3.指數(shù)函數(shù)y=ax的圖象經(jīng)過(guò)點(diǎn)(2,16)則a的值是()A.14B.12C.2D.4答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(2,16)代入得16=a2解得a=4所以y=4x故選D.4.x+y+z=1,則2x2+3y2+z2的最小值為()
A.1
B.
C.
D.答案:C5.平面向量、的夾角為60°,=(2,0),=1,則=(
)
A.
B.
C.3
D.7答案:B6.已知拋物線(xiàn)x2=4y的焦點(diǎn)為F,A、B是拋物線(xiàn)上的兩動(dòng)點(diǎn),且AF=λFB(λ>0).過(guò)A、B兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),設(shè)其交點(diǎn)為M.
(I)證明FM.AB為定值;
(II)設(shè)△ABM的面積為S,寫(xiě)出S=f(λ)的表達(dá)式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點(diǎn)F(0,1),準(zhǔn)線(xiàn)方程為y=-1,顯然AB斜率存在且過(guò)F(0,1)設(shè)其直線(xiàn)方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線(xiàn)4y=x2上任意一點(diǎn)斜率為y'=x2,則易得切線(xiàn)AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點(diǎn)M坐標(biāo),xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說(shuō)明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因?yàn)閨AF|、|BF|分別等于A、B到拋物線(xiàn)準(zhǔn)線(xiàn)y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當(dāng)λ=1時(shí),S取得最小值4.7.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當(dāng)0<a<1時(shí)函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當(dāng)a>1時(shí)函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.8.(幾何證明選講選做題)如圖,△ABC的外角平分線(xiàn)AD交外接圓于D,BD=4,則CD=______.答案:∵A、B、C、D共圓,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故為4.9.已知隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=0.05且η=5ξ+1,則Eη等于()
A.1.15
B.1.25
C.0.75
D.2.5答案:B10.過(guò)直線(xiàn)y=x上的一點(diǎn)作圓(x-5)2+(y-1)2=2的兩條切線(xiàn)l1,l2,當(dāng)直線(xiàn)l1,l2關(guān)于y=x對(duì)稱(chēng)時(shí),它們之間的夾角為()
A.30°
B.45°
C.60°
D.90°答案:C11.橢圓上有一點(diǎn)P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點(diǎn),△F1PF2為直角三角形,則這樣的點(diǎn)P有()
A.3個(gè)
B.4個(gè)
C.6個(gè)
D.8個(gè)答案:C12.已知隨機(jī)變量X的分布列是:(
)
X
4
a
9
10
P
0.3
0.1
b
0.2
且EX=7.5,則a的值為()
A.5
B.6
C.7
D.8答案:C13.設(shè)橢圓(m>0,n>0)的右焦點(diǎn)與拋物線(xiàn)y2=8x的焦點(diǎn)相同,離心率為,則此橢圓的方程為(
)
A.
B.
C.
D.答案:B14.經(jīng)過(guò)點(diǎn)M(1,1)且在兩軸上截距相等的直線(xiàn)是______.答案:①當(dāng)所求的直線(xiàn)與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線(xiàn)的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線(xiàn)的方程為x+y=2;②當(dāng)所求的直線(xiàn)與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線(xiàn)的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線(xiàn)的方程為y=x.綜上,所求直線(xiàn)的方程為:x+y=2或y=x.故為:x+y=2或y=x15.某年級(jí)共有210名同學(xué)參加數(shù)學(xué)期中考試,隨機(jī)抽取10名同學(xué)成績(jī)?nèi)缦拢?/p>
成績(jī)(分)506173859094人數(shù)221212則總體標(biāo)準(zhǔn)差的點(diǎn)估計(jì)值為_(kāi)_____(結(jié)果精確到0.01).答案:由題意知本題需要先做出這組數(shù)據(jù)的平均數(shù)50×2+61×2+73+2×85+90+2×9410=74.9,這組數(shù)據(jù)的總體方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴總體標(biāo)準(zhǔn)差是309.76≈17.60,故為:17.60.16.若雙曲線(xiàn)與橢圓x216+y225=1有相同的焦點(diǎn),與雙曲線(xiàn)x22-y2=1有相同漸近線(xiàn),求雙曲線(xiàn)方程.答案:依題意可設(shè)所求的雙曲線(xiàn)的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線(xiàn)與橢圓x216+y225=1有相同的焦點(diǎn)∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線(xiàn)的方程為y23-x26=1…(13分)17.若P=+,Q=+(a≥0),則P,Q的大小關(guān)系是()
A.P>Q
B.P=Q
C.P<Q
D.由a的取值確定答案:C18.一只袋中裝有2個(gè)白球、3個(gè)紅球,這些球除顏色外都相同.
(Ⅰ)從袋中任意摸出1個(gè)球,求摸到的球是白球的概率;
(Ⅱ)從袋中任意摸出2個(gè)球,求摸出的兩個(gè)球都是白球的概率;
(Ⅲ)從袋中任意摸出2個(gè)球,求摸出的兩個(gè)球顏色不同的概率.答案:(Ⅰ)從5個(gè)球中摸出1個(gè)球,共有5種結(jié)果,其中是白球的有2種,所以從袋中任意摸出1個(gè)球,摸到白球的概率為25.
…(4分)(Ⅱ)從袋中任意摸出2個(gè)球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個(gè)球,摸出的兩個(gè)球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個(gè)球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個(gè)球,摸出的2個(gè)球顏色不同的概率為610=35.
…(14分)19.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線(xiàn)是()
A.長(zhǎng)軸在x軸上的橢圓
B.長(zhǎng)軸在y軸上的橢圓
C.實(shí)軸在x軸上的雙曲線(xiàn)
D.實(shí)軸在y軸上的雙曲線(xiàn)答案:D20.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.
(1)求A1C與DB所成角的大?。?/p>
(2)求二面角D-A1B-C的余弦值;
(3)若點(diǎn)E在A1B上,且EB=1,求EC與平面ABCD所成角的大小.答案:(1)如圖建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設(shè)平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個(gè)法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設(shè)n=(0,0,1)是平面ABCD的一個(gè)法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.21.已知集合A={x|x>1},則(CRA)∩N的子集有()A.1個(gè)B.2個(gè)C.4個(gè)D.8個(gè)答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4個(gè),故選C.22.拋物線(xiàn)y2=4x的焦點(diǎn)坐標(biāo)是()
A.(4,0)
B.(2,0)
C.(1,0)
D.答案:C23.某種燈泡的耐用時(shí)間超過(guò)1000小時(shí)的概率為0.2,有3個(gè)相互獨(dú)立的燈泡在使用1000小時(shí)以后,最多只有1個(gè)損壞的概率是()
A.0.008
B.0.488
C.0.096
D.0.104答案:D24.閱讀下面的程序框圖,該程序運(yùn)行后輸出的結(jié)果為_(kāi)_____.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.25.(不等式選講選做題)
已知實(shí)數(shù)a、b、x、y滿(mǎn)足a2+b2=1,x2+y2=3,則ax+by的最大值為_(kāi)_____.答案:因?yàn)閍2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時(shí)取等號(hào),所以ax+by的最大值為3.故為:3.26.若點(diǎn)P分向量AB的比為34,則點(diǎn)A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故
A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.27.請(qǐng)輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為_(kāi)_____.答案:INPUT表示輸入語(yǔ)句,輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為:INPUT“輸入一個(gè)奇數(shù)n”;n.故為:INPUT“輸入一個(gè)奇數(shù)n”;n.28.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______
種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48029.有一個(gè)正四棱錐,它的底面邊長(zhǎng)與側(cè)棱長(zhǎng)均為a,現(xiàn)用一張正方形包裝紙將其完全包住(不能裁剪紙,但可以折疊),那么包裝紙的最小邊長(zhǎng)應(yīng)為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開(kāi)時(shí)如圖所示:分析易知當(dāng)以PP′為正方形的對(duì)角線(xiàn)時(shí),所需正方形的包裝紙的面積最小,此時(shí)邊長(zhǎng)最小.設(shè)此時(shí)的正方形邊長(zhǎng)為x則:(PP′)2=2x2,又因?yàn)镻P′=a+2×32a=a+3a,∴(
a+3a)2=2x2,解得:x=6+22a.故選A30.在空間直角坐標(biāo)系中,已知A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點(diǎn)間的距離|AB|=______.答案:∵A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.31.螺母是由
______和
______兩個(gè)簡(jiǎn)單幾何體構(gòu)成的.答案:根據(jù)螺母的結(jié)構(gòu)特征知,是由正六棱柱里面挖去的一個(gè)圓柱構(gòu)成的,故為:正六棱柱,圓柱.32.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序空白框圖,將空白處補(bǔ)上.
①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序,由于第一次執(zhí)行循環(huán)時(shí)的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計(jì)數(shù)變量i為2,步長(zhǎng)為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.33.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標(biāo)方程;
(2)當(dāng)0≤t<π2及π≤t<3π2時(shí),各得到曲線(xiàn)的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線(xiàn)的直角坐標(biāo)普通方程為x2-y24=1.(2)當(dāng)0≤t≤π2時(shí),x≥1,y≥0,得到的是曲線(xiàn)在第一象限的部分(包括(1,0)點(diǎn));當(dāng)0≤t≤3π2時(shí),x≤-1,y≥0,得到的是曲線(xiàn)在第二象限的部分,(包括(-1,0)點(diǎn)).34.在畫(huà)兩個(gè)變量的散點(diǎn)圖時(shí),下面哪個(gè)敘述是正確的(
)
A.預(yù)報(bào)變量x軸上,解釋變量y軸上
B.解釋變量x軸上,預(yù)報(bào)變量y軸上
C.可以選擇兩個(gè)變量中任意一個(gè)變量x軸上
D.可以選擇兩個(gè)變量中任意一個(gè)變量y軸上答案:B35.已知點(diǎn)D是△ABC的邊BC的中點(diǎn),若記AB=a,AC=b,則用a,b表示AD為_(kāi)_____.答案:以AB,AC為臨邊作平行四邊形ACEB,連接其對(duì)角線(xiàn)AE、BC交與點(diǎn)D,易知D是△ABC的邊BC的中點(diǎn),且D是AE的中點(diǎn),如圖:由向量的平行四邊形法則可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故為:AD=12(a+b)36.曲線(xiàn)x=sin2ty=sint(t為參數(shù))的普通方程為_(kāi)_____.答案:因?yàn)榍€(xiàn)x=sin2ty=sint(t為參數(shù))∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故為:x=y2,(-1≤y≤1).37.曲線(xiàn)(θ為參數(shù))上的點(diǎn)到兩坐標(biāo)軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D38.設(shè)a=log132,b=log1213,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.39.曲線(xiàn)x=sinθy=sin2θ(θ為參數(shù))與直線(xiàn)y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:曲線(xiàn)
x=sinθy=sin2θ
(θ為參數(shù)),為拋物線(xiàn)段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.40.某化肥廠(chǎng)甲、乙兩個(gè)車(chē)間包裝肥料,在自動(dòng)包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱(chēng)其重量,分別記錄抽查數(shù)據(jù)如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說(shuō)明哪個(gè)車(chē)間產(chǎn)品較穩(wěn)定.答案:(1)因?yàn)殚g隔時(shí)間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因?yàn)?x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車(chē)間產(chǎn)品較穩(wěn)定.41.命題“對(duì)于正數(shù)a,若a>1,則lg
a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個(gè)數(shù)為()A.0B.1C.2D.4答案:原命題“對(duì)于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對(duì)于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對(duì)于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對(duì)于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.42.在空間直角坐標(biāo)系中,點(diǎn),過(guò)點(diǎn)P作平面xOy的垂線(xiàn)PQ,則Q的坐標(biāo)為()
A.
B.
C.
D.答案:D43.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.44.根據(jù)下面的要求,求滿(mǎn)足1+2+3+…+n>500的最小的自然數(shù)n.
(1)畫(huà)出執(zhí)行該問(wèn)題的程序框圖;
(2)以下是解決該問(wèn)題的一個(gè)程序,但有2處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿(mǎn)足條件退出循環(huán),While錯(cuò)誤,應(yīng)改成LOOP
UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1
應(yīng)改為輸出n;45.某游泳館出售冬季游泳卡,每張240元,其使用規(guī)定:不記名,每卡每次只限一人,每天只限一次.某班有48名同學(xué),老師打算組織同學(xué)們集體去游泳,除需購(gòu)買(mǎi)若干張游泳卡外,每次游泳還需包一輛汽車(chē),無(wú)論乘坐多少名同學(xué),每次的包車(chē)費(fèi)均為40元.
若使每個(gè)同學(xué)游8次,每人最少應(yīng)交多少元錢(qián)?答案:設(shè)買(mǎi)x張游泳卡,總開(kāi)支為y元,則每批去x名同學(xué),共需去48×8x=384x批,總開(kāi)支又分為:①買(mǎi)卡所需費(fèi)用240x;②包車(chē)所需費(fèi)用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840當(dāng)且僅當(dāng)x=64x時(shí),即x=8時(shí)取等號(hào).∴當(dāng)x=8時(shí),總開(kāi)支y的最大值為3840元,此時(shí)每人最少應(yīng)交384048=80(元).答:若使每個(gè)同學(xué)游8次,每人最少應(yīng)交80元錢(qián).46.已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(3,2)滿(mǎn)足()
A.是圓心
B.在圓上
C.在圓內(nèi)
D.在圓外答案:C47.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運(yùn)算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過(guò)程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項(xiàng)原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項(xiàng)正確;B選項(xiàng)原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項(xiàng)正確;C選項(xiàng)原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項(xiàng)錯(cuò)誤;D選項(xiàng)原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項(xiàng)正確;故選C.48.某市某年一個(gè)月中30天對(duì)空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的頻率分布表;
(Ⅱ)完成下面的頻率分布直方圖,并寫(xiě)出頻率分布直方圖中a的值;
(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.
分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.
…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)49.拋擲兩顆骰子,所得點(diǎn)數(shù)之和為ξ,那么ξ=4表示的隨機(jī)試驗(yàn)結(jié)果是()
A.一顆是3點(diǎn),一顆是1點(diǎn)
B.兩顆都是2點(diǎn)
C.兩顆都是4點(diǎn)
D.一顆是3點(diǎn),一顆是1點(diǎn)或兩顆都是2點(diǎn)答案:D50.直線(xiàn)x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長(zhǎng)為_(kāi)_____.答案:∵直線(xiàn)x=2-12ty=-1+12t(t為參數(shù))∴直線(xiàn)的普通方程為x+y-1=0圓心到直線(xiàn)的距離為d=12=22,l=24-(22)2=14,故為:14.第3卷一.綜合題(共50題)1.若不等式對(duì)一切x恒成立,求實(shí)數(shù)m的范圍.答案:見(jiàn)解析解析:∵x2-8x+20=(x-4)2+4>0,∴只須mx2-mx-1<0恒成立,即可:①
當(dāng)m=0時(shí),-1<0,不等式成立;②
當(dāng)m≠0時(shí),則須,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.2.下列幾種說(shuō)法正確的個(gè)數(shù)是()
①相等的角在直觀圖中對(duì)應(yīng)的角仍然相等;
②相等的線(xiàn)段在直觀圖中對(duì)應(yīng)的線(xiàn)段仍然相等;
③平行的線(xiàn)段在直觀圖中對(duì)應(yīng)的線(xiàn)段仍然平行;
④線(xiàn)段的中點(diǎn)在直觀圖中仍然是線(xiàn)段的中點(diǎn).
A.1
B.2
C.3
D.4答案:B3.下列說(shuō)法正確的是()
A.互斥事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件
B.互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件
C.事件A,B中至少有一個(gè)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率大
D.事件A,B同時(shí)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率小答案:B4.某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿(mǎn)足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒(méi)有被排在一起的演講的順序”可通過(guò)如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個(gè)對(duì)象與其它班的5位同學(xué)共6個(gè)對(duì)象排成一列,有A66種方法;③在以上6個(gè)對(duì)象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計(jì)數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.5.若,,,則
(
)
A.
B.
C.
D.答案:A6.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)向量其中,若且0≤μ≤λ≤1,那么C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()
A.
B.
C.
D.
答案:A7.已知二階矩陣A=2ab0屬于特征值-1的一個(gè)特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個(gè)特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.8.(文)將圖所示的一個(gè)直角三角形ABC(∠C=90°)繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體的正視圖是下面四個(gè)圖形中的(
)
A.
B.
C.
D.
答案:B9.某海域內(nèi)有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b的橢圓,已知島上甲、乙導(dǎo)航燈的海拔高度分別為h1、h2,且兩個(gè)導(dǎo)航燈在海平面上的投影恰好落在橢圓的兩個(gè)焦點(diǎn)上,現(xiàn)有船只經(jīng)過(guò)該海域(船只的大小忽略不計(jì)),在船上測(cè)得甲、乙導(dǎo)航燈的仰角分別為θ1、θ2,那么船只已進(jìn)入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a10.下列函數(shù)中,定義域?yàn)椋?,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域?yàn)椋?,+∞),函數(shù)y=x的定義域?yàn)閇0,+∞),函數(shù)y=1x2的定義域?yàn)閧x|x≠0},函數(shù)y=12x的定義域?yàn)镽,故只有A中的函數(shù)滿(mǎn)足定義域?yàn)椋?,+∞),故選A.11.下列四個(gè)函數(shù)中,與y=x表示同一函數(shù)的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項(xiàng)A中的函數(shù)的定義域與已知函數(shù)不同,故排除選項(xiàng)A.選項(xiàng)B中的函數(shù)與已知函數(shù)具有相同的定義域、值域和對(duì)應(yīng)關(guān)系,故是同一個(gè)函數(shù),故選項(xiàng)B滿(mǎn)足條件.選項(xiàng)C中的函數(shù)與已知函數(shù)的值域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)C.選項(xiàng)D中的函數(shù)與與已知函數(shù)的定義域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)D,故選B.12.已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn=c
(a、b、c∈R),則“c=0”是“{an}是等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分也非必要條件答案:數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c根據(jù)等差數(shù)列的前n項(xiàng)和的公式,可以看出當(dāng)c=0時(shí),Sn=an2+bn表示等差數(shù)列的前n項(xiàng)和,則數(shù)列是一個(gè)等差數(shù)列,當(dāng)數(shù)列是一個(gè)等差數(shù)列時(shí),表示前n項(xiàng)和時(shí),c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要條件,故選C.13.向量b與a=(2,-1,2)共線(xiàn),且a?b=-18,則b的坐標(biāo)為_(kāi)_____.答案:因?yàn)橄蛄縝與a=(2,-1,2)共線(xiàn),所以設(shè)b=ma,因?yàn)榍襛?b=-18,所以ma2=-18,因?yàn)閨a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).14.(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線(xiàn)上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線(xiàn)段CE的長(zhǎng)為_(kāi)_____.答案:A:當(dāng)x<-3時(shí)不等式|x-5|+|x+3|≥10可化為:-(x-5)-(x+3)≥10解得:x≤-4當(dāng)-3≤x≤5時(shí)不等式|x-5|+|x+3|≥10可化為:-(x-5)+(x+3)=8≥10恒不成立當(dāng)x>5時(shí)不等式|x-5|+|x+3|≥10可化為:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集為:(-∞,-4]∪[6,+∞).B:圓ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)為圓心,半徑等于1的圓,故圓心的極坐標(biāo)為(1,3π2).C:由題意,DF=CF=22,BE=1,BF=2,由DF?FC=AF?BF,得22?22=AF?2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割線(xiàn)定理得CE2=BE?EA=1×7=7.∴CE=7.故為:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.15.一個(gè)正方體的展開(kāi)圖如圖所示,A、B、C、D為原正方體的頂點(diǎn),則在原來(lái)的正方體中()A.AB∥CDB.AB與CD相交C.AB⊥CDD.AB與CD所成的角為60°答案:將正方體的展開(kāi)圖,還原為正方體,AB,CD為相鄰表面,且無(wú)公共頂點(diǎn)的兩條面上的對(duì)角線(xiàn)∴AB與CD所成的角為60°故選D.16.已知f(x)=,若f(x0)>1,則x0的取值范圍是()
A.(0,1)
B.(-∞,0)∪(0,+∞)
C.(-∞,0)∪(1,+∞)
D.(1,+∞)答案:C17.已知拋物線(xiàn)y=14x2,則過(guò)其焦點(diǎn)垂直于其對(duì)稱(chēng)軸的直線(xiàn)方程為_(kāi)_____.答案:拋物線(xiàn)y=14x2的標(biāo)準(zhǔn)方程為x2=4y的焦點(diǎn)F(0,1),對(duì)稱(chēng)軸為y軸所以?huà)佄锞€(xiàn)y=14x2,則過(guò)其焦點(diǎn)垂直于其對(duì)稱(chēng)軸的直線(xiàn)方程為y=1故為y=1.18.對(duì)于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2012次操作后得到的數(shù)是
()A.25B.250C.55D.133答案:第1次操作為23+53=133,第2次操作為13+33+33=55,第3次操作為53+53=250,第4次操作為23+53+03=133∴操作結(jié)果,以3為周期,循環(huán)出現(xiàn)∵2012=3×670+2∴第2012次操作后得到的數(shù)與第2次操作后得到的數(shù)相同∴第2012次操作后得到的數(shù)是55故選C.19.已知定點(diǎn)A(12.0),M為曲線(xiàn)x=6+2cosθy=2sinθ上的動(dòng)點(diǎn),若AP=2AM,試求動(dòng)點(diǎn)P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動(dòng)點(diǎn)(x,y)由AP=2AM,即M為線(xiàn)段AP的中點(diǎn)故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動(dòng)點(diǎn)P的軌跡C的方程為x2+y2=1620.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動(dòng)點(diǎn)P的軌跡是()A.雙曲線(xiàn)B.雙曲線(xiàn)右支C.一條射線(xiàn)D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線(xiàn)的定義,∴點(diǎn)P是以M(-2,0),N(2,0)為兩焦點(diǎn)的雙曲線(xiàn)的右支.故選B.21.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個(gè)特稱(chēng)命題∴命題“存在x0∈R,使x02+1<0”的否定是“對(duì)任意x0∈R,使x02+1≥0”故為:對(duì)任意x0∈R,使x02+1≥022.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號(hào)依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號(hào)可能是()
A.5,10,15,20,25
B.2,4,8,16,32
C.1,2,3,4,5
D.7,17,27,37,47答案:D23.對(duì)于任意空間四邊形,試證明它的一組對(duì)邊中點(diǎn)的連線(xiàn)與另一組對(duì)邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點(diǎn),利用多邊形加法法則可得①又E、F分別是AB、CD的中點(diǎn),故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.24.已知點(diǎn)P是以F1、F2為左、右焦點(diǎn)的雙曲線(xiàn)(a>0,b>0)左支上一點(diǎn),且滿(mǎn)足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線(xiàn)的離心率為()
A.
B.
C.
D.答案:D25.某工廠(chǎng)生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車(chē)間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測(cè),這種抽樣方法是()
A.簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.其它抽樣方法答案:B26.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.
(1)求A1C與DB所成角的大小;
(2)求二面角D-A1B-C的余弦值;
(3)若點(diǎn)E在A1B上,且EB=1,求EC與平面ABCD所成角的大小.答案:(1)如圖建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設(shè)平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個(gè)法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設(shè)n=(0,0,1)是平面ABCD的一個(gè)法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.27.如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B),其中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不動(dòng),當(dāng)指針恰好落在分界線(xiàn)時(shí),則這次轉(zhuǎn)動(dòng)無(wú)效,重新開(kāi)始)為一次游戲,記轉(zhuǎn)盤(pán)(A)指針?biāo)鶎?duì)的數(shù)為X轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎(jiǎng)勵(lì)分為ξ分.
(1)求X<2且Y>1時(shí)的概率
(2)某人玩12次游戲,求他平均可以得到多少獎(jiǎng)勵(lì)分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎(jiǎng)勵(lì)分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎(jiǎng)勵(lì)分為12×Eξ=50.28.O、B、C為空間四個(gè)點(diǎn),又、、為空間的一個(gè)基底,則()
A.O、A、B、C四點(diǎn)不共線(xiàn)
B.O、A、B、C四點(diǎn)共面,但不共線(xiàn)
C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線(xiàn)
D.O、A、B、C四點(diǎn)不共面答案:D29.不等式log12(x2-2x-15)>log12(x+13)的解集為_(kāi)_____.答案:滿(mǎn)足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,則不等式log12(x2-2x-15)>log12(x+13)的解集為(-4,-3)∪(5,7)故為:(-4,-3)∪(5,7).30.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C31.某人射擊一次擊中的概率為0.6,經(jīng)過(guò)3次射擊,此人至少有兩次擊中目標(biāo)的概率為()
A.
B.
C.
D.答案:A32.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線(xiàn)BF交AD的延長(zhǎng)線(xiàn)于F,若AB=10,CD=8,則切線(xiàn)BF的長(zhǎng)是
______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.33.在△ABC中,AB=2,BC=3,∠ABC=60°,AD為BC邊上的高,O為AD的中點(diǎn),若
=λ+μ,則λ+μ=()
A.1
B.
C.
D.答案:D34.表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機(jī)事件發(fā)生的可能性大小的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《證劵基礎(chǔ)知識(shí)最終》課件
- 《激光切割工藝》課件
- 荒山綠化項(xiàng)目可行性研究報(bào)告
- 《人力資源管理奧秘》課件
- 股份解禁協(xié)議三篇
- 專(zhuān)業(yè)畢業(yè)實(shí)習(xí)報(bào)告4篇
- 2023年-2024年企業(yè)主要負(fù)責(zé)人安全教育培訓(xùn)試題及答案(易錯(cuò)題)
- 2024員工三級(jí)安全培訓(xùn)考試題帶解析答案可打印
- 2023年-2024年項(xiàng)目部安全管理人員安全培訓(xùn)考試題附答案【培優(yōu)A卷】
- 2023年-2024年企業(yè)主要負(fù)責(zé)人安全培訓(xùn)考試題(預(yù)熱題)
- (完整word版)Word信紙(A4橫條直接打印版)模板
- 鋼結(jié)構(gòu)件運(yùn)輸專(zhuān)項(xiàng)方案
- 物業(yè)公司車(chē)輛進(jìn)出登記表
- DCS基礎(chǔ)培訓(xùn)課程(和利時(shí))課件
- 員工消防安全教育培訓(xùn)
- HART-375手操器說(shuō)明書(shū)
- 文學(xué)批評(píng)與實(shí)踐-四川大學(xué)中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫(kù)2023年
- (52)-12.1服裝的審美形態(tài)11.4
- 力行“五育”并舉融合“文化”育人
- 上海中心大廈介紹
- 管道試壓記錄表
評(píng)論
0/150
提交評(píng)論