2023年溫州科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年溫州科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年溫州科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年溫州科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年溫州科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩43頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年溫州科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.當(dāng)a>0時(shí),不等式組的解集為(

)。答案:當(dāng)a>時(shí)為;當(dāng)a=時(shí)為{};當(dāng)0<a<時(shí)為[a,1-a]2.

如圖,已知平行六面體OABC-O1A1B1C1,點(diǎn)G是上底面O1A1B1C1的中心,且,則用

表示向量為(

A.

B.

C.

D.

答案:A3.4位學(xué)生與2位教師并坐合影留念,針對(duì)下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)

(1)教師必須坐在中間;

(2)教師不能坐在兩端,但要坐在一起;

(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學(xué)生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學(xué)生,有A44種坐法,2位教師坐在一起,將其看成一個(gè)整體,可以交換位置,有2種坐法,將這個(gè)“整體”插在4個(gè)學(xué)生的空位中,又由教師不能坐在兩端,則有3個(gè)空位可選,則共有2A44A31=144種坐法;(3)先排4位學(xué)生,有A44種坐法,教師不能相鄰,將其依次插在4個(gè)學(xué)生的空位中,又由教師不能坐在兩端,則有3個(gè)空位可選,有A32種坐法,則共有A44A32=144種坐法..4.設(shè)x1、x2、y1、y2是實(shí)數(shù),且滿足x12+x22≤1,

證明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:證明略解析:分析:要證原不等式成立,也就是證(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)當(dāng)x12+x22=1時(shí),原不等式成立.……………3分(2)當(dāng)x12+x22<1時(shí),聯(lián)想根的判別式,可構(gòu)造函數(shù)f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判別式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由題意x12+x22<1,函數(shù)f(x)的圖象開口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此拋物線與x軸必有公共點(diǎn).∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分5.若向量且與的夾角余弦為則λ等于()

A.4

B.-4

C.

D.答案:C6.(坐標(biāo)系與參數(shù)方程選做題)過點(diǎn)(2,π3)且平行于極軸的直線的極坐標(biāo)方程為______.答案:法一:先將極坐標(biāo)化成直角坐標(biāo)表示,(2,π3)化為(1,3),過(1,3)且平行于x軸的直線為y=3,再化成極坐標(biāo)表示,即ρsinθ=3.法二:在極坐標(biāo)系中,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.設(shè)A(ρ,θ)是直線上的任一點(diǎn),A到極軸的距離AH=2sinπ3=3,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.故為:ρsinθ=37.已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是()

A.2-1

B.2-2

C.-1

D.-2答案:C8.某射擊運(yùn)動(dòng)員在四次射擊中分別打出了9,x,10,8環(huán)的成績(jī),已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:129.若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:310.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.11.已知隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(6,),則E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A12.將3封信投入5個(gè)郵筒,不同的投法共有()

A.15

B.35

C.6

D.53種答案:D13.條件語(yǔ)句的一般形式如圖所示,其中B表示的是()

A.條件

B.條件語(yǔ)句

C.滿足條件時(shí)執(zhí)行的內(nèi)容

D.不滿足條件時(shí)執(zhí)行的內(nèi)容

答案:C14.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實(shí)數(shù)a的值為______.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時(shí),A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時(shí),A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.15.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對(duì)乙運(yùn)動(dòng)員的判斷錯(cuò)誤的是()A.乙運(yùn)動(dòng)員得分的中位數(shù)是28B.乙運(yùn)動(dòng)員得分的眾數(shù)為31C.乙運(yùn)動(dòng)員的場(chǎng)均得分高于甲運(yùn)動(dòng)員D.乙運(yùn)動(dòng)員的最低得分為0分答案:根據(jù)題意,可得甲的得分?jǐn)?shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分?jǐn)?shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分?jǐn)?shù)據(jù)按從小到大的順序排列,位于中間的兩個(gè)數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運(yùn)動(dòng)員得分的中位數(shù)是28,A項(xiàng)是正確的;乙運(yùn)動(dòng)員得分的眾數(shù)為31,B項(xiàng)是正確的;乙運(yùn)動(dòng)員的場(chǎng)均得分高于甲運(yùn)動(dòng)員,C各項(xiàng)是正確的.而D項(xiàng)因?yàn)橐疫\(yùn)動(dòng)員的得分沒有0分,故D項(xiàng)錯(cuò)誤故選:D16.極點(diǎn)到直線ρ(cosθ+sinθ)=3的距離是

______.答案:將原極坐標(biāo)方程ρ(cosθ+sinθ)=3化為:直角坐標(biāo)方程為:x+y=3,原點(diǎn)到該直線的距離是:d=|3|2=62.∴所求的距離是:62.故填:62.17.已知點(diǎn)P(t,t),t∈R,點(diǎn)M是圓x2+(y-1)2=上的動(dòng)點(diǎn),點(diǎn)N是圓(x-2)2+y2=上的動(dòng)點(diǎn),則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C18.對(duì)于函數(shù)y=f(x),在給定區(qū)間上有兩個(gè)數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.19.圓臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,則圓臺(tái)較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因?yàn)閳A臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A20.長(zhǎng)為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動(dòng),,則點(diǎn)C的軌跡是()

A.線段

B.圓

C.橢圓

D.雙曲線答案:C21.已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)C到A、B兩點(diǎn)的距離之差的絕對(duì)值為2,點(diǎn)C的軌跡與直線

y=x-2交于D、E兩點(diǎn),求線段DE的中點(diǎn)坐標(biāo)及其弦長(zhǎng)DE.答案:∵|CB|-|CA|=2<23=|AB|,∴點(diǎn)C的軌跡是以A、B為焦點(diǎn)的雙曲線,2a=2,2c=23,∴a=1,c=3,∴b=2,∴點(diǎn)C的軌跡方程為x2-y22=1.把直線

y=x-2代入x2-y22=1化簡(jiǎn)可得x2+4x-6=0,△=16-4(-6)=40>0,設(shè)D、E兩點(diǎn)的坐標(biāo)分別為(x1,y1

)、(x2,y2),∴x1+x2=-4,x1?x2=-6.∴線段DE的中點(diǎn)坐標(biāo)為M(-2,4),DE=1+1?|x1-x2|=2?(x1

+x2)2-4x1

?x2

=216-4(-6)=45.22.由數(shù)字0、1、2、3、4可組成不同的三位數(shù)的個(gè)數(shù)是()

A.100

B.125

C.64

D.80答案:A23.已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是()

A.2

B.6

C.4

D.12答案:C24.平面內(nèi)有兩個(gè)定點(diǎn)F1(-5,0)和F2(5,0),動(dòng)點(diǎn)P滿足條件|PF1|-|PF2|=6,則動(dòng)點(diǎn)P的軌跡方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線右支,得c=5,2a=6,∴a=3,∴b2=16,故動(dòng)點(diǎn)P的軌跡方程是x29-y216=1(x≥3).故選D.25.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(

)

A.

B.

C.

D.

答案:C26.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,M為DD1的中點(diǎn),N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.27.若直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為邊長(zhǎng)的三角形是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.不能確定答案:B28.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a

(a+b)=a2+

a

b=1+1×2cos120°=0,所以a⊥c.故選A.29.用行列式討論關(guān)于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)30.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)向量其中,若且0≤μ≤λ≤1,那么C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()

A.

B.

C.

D.

答案:A31.已知關(guān)于的不等式的解集為,且,求的值答案:,,解析:用數(shù)形結(jié)合法,如圖顯然解集是,即,從而此時(shí)=與交點(diǎn)橫坐標(biāo)為5,從而縱坐標(biāo)為4,將交點(diǎn)坐標(biāo)代入可得所以,,32.從一批含有13只正品,2只次品的產(chǎn)品中,不放回地抽取3次,每次抽取1只,設(shè)抽得次品數(shù)為X,則E(5X+1)=______.答案:由題意,X的取值為0,1,2,則P(X=0)=1315×1214×1113=2235;P(X=1)=215×1314×1213+1315×214×1213+1315×1214×213=1235P(X=2)=1315×214×113+215×1314×113+215×114×1313=135所以期望E(X)=0×2235+1×1235+2×135=1435,所以E(5X+1)=1435×5+1=3故為3.33.若直線的參數(shù)方程為,則直線的斜率為(

)A.B.C.D.答案:D34.已知空間向量a=(1,2,3),點(diǎn)A(0,1,0),若AB=-2a,則點(diǎn)B的坐標(biāo)是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設(shè)B=(x,y,z),因?yàn)锳B=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.35.如圖,已知雙曲線以長(zhǎng)方形ABCD的頂點(diǎn)A,B為左、右焦點(diǎn),且過C,D兩頂點(diǎn).若AB=4,BC=3,則此雙曲線的標(biāo)準(zhǔn)方程為______.答案:由題意可得點(diǎn)OA=OB=2,AC=5設(shè)雙曲線的標(biāo)準(zhǔn)方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標(biāo)準(zhǔn)方程是x2-y23=1.故為:x2-y23=136.已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點(diǎn),試求:

(1)AE與平面BB1C1C所成的角的正弦值;

(2)二面角C1-DB-A的余弦值.答案:以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示:(1)設(shè)正方體棱長(zhǎng)為2.則E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量為n=(0,1,0).設(shè)AE與平面BCC1B1所成的角為θ.sinθ=|cos<AE,n>|=|AE?n||AE|

|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).設(shè)平面DBC1的法向量為n1=(x,y,z),則n1?DB=x+y=0n1?DC1=y+z=0,令y=-1,則x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量為n2=(0,0,1).設(shè)二面角C1-DB-A的大小為α,從圖中可知:α為鈍角.∵cos<n1,n2>=n1?n2|n1|

|n2|=13=33,∴cosα=-33.37.方程組的解集是()

A.{-1,2}

B.(-1,2)

C.{(-1,2)}

D.{(x,y)|x=-1或y=2}答案:C38.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C39.若矩陣A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011屆學(xué)生高二上學(xué)期的期中成績(jī)矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語(yǔ)文成績(jī),i=2表示數(shù)學(xué)成績(jī),i=3表示英語(yǔ)成績(jī),i=4表示語(yǔ)數(shù)外三門總分成績(jī)j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()

A.語(yǔ)文

B.?dāng)?shù)學(xué)

C.外語(yǔ)

D.都一樣答案:B40.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)等號(hào)成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個(gè)式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號(hào)當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)成立.41.如圖:一個(gè)力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.42.關(guān)于斜二測(cè)畫法畫直觀圖說法不正確的是()

A.在實(shí)物圖中取坐標(biāo)系不同,所得的直觀圖有可能不同

B.平行于坐標(biāo)軸的線段在直觀圖中仍然平行于坐標(biāo)軸

C.平行于坐標(biāo)軸的線段長(zhǎng)度在直觀圖中仍然保持不變

D.斜二測(cè)坐標(biāo)系取的角可能是135°答案:C43.設(shè)=(3,4),=(sinα,cosα),且⊥,則tanα的值為()

A.

B.-

C.

D.-答案:D44.設(shè)圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點(diǎn)P的坐標(biāo)為(2,1),那么()

A.點(diǎn)P在直線L上,但不在圓M上

B.點(diǎn)P在圓M上,但不在直線L上

C.點(diǎn)P既在圓M上,又在直線L上

D.點(diǎn)P既不在直線L上,也不在圓M上答案:C45.求證:若圓內(nèi)接四邊形的兩條對(duì)角線互相垂直,則從對(duì)角線交點(diǎn)到一邊中點(diǎn)的線段長(zhǎng)等于圓心到該邊對(duì)邊的距離.答案:以兩條對(duì)角線的交點(diǎn)為原點(diǎn)O、對(duì)角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)

設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點(diǎn)E(c2,d2),AB的中點(diǎn)H(-a2,-b2).又圓心G到四個(gè)頂點(diǎn)的距離相等,故圓心G的橫坐標(biāo)等于AC中點(diǎn)的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點(diǎn)的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.46.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點(diǎn)P(m,2)在曲線C上,則m=______.答案:因?yàn)榍€C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點(diǎn)P(m,2)在曲線C上,所以m=4×4=16.故為:16.47.已知函數(shù)f(x)對(duì)其定義域內(nèi)任意兩個(gè)實(shí)數(shù)a,b,當(dāng)a<b時(shí),都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個(gè)交點(diǎn).答案:證明:假設(shè)函數(shù)f(x)的圖象與x軸至少有兩個(gè)交點(diǎn),…(2分)(1)若f(x)的圖象與x軸有兩個(gè)交點(diǎn),不妨設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對(duì)其定義域內(nèi)任意實(shí)數(shù)x1,x2,當(dāng)x1<x2時(shí),有f(x1)<f(x2).…(7分)又根據(jù)假設(shè),x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn),所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個(gè)交點(diǎn).…(11分)(2)若f(x)的圖象與x軸交點(diǎn)多于兩個(gè),可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個(gè)以上交點(diǎn).綜上,函數(shù)f(x)的圖象與x軸至多有一個(gè)交點(diǎn)…(14分)48.如果命題P:?∈{?},命題Q:??{?},那么下列結(jié)論不正確的是()A.“P或Q”為真B.“P且Q”為假C.“非P”為假D.“非Q”為假答案:命題P:?∈{?},命題Q:??{?},可直接看出命題Q,命題P都是正確的.故“P或Q”為真.“P且Q”為真.“非P”為假.“非Q”為假.故選B.49.從一堆蘋果中任取5只,稱得它們的質(zhì)量為(單位:克):125124121123127,則該樣本標(biāo)準(zhǔn)差s=______(克)(用數(shù)字作答).答案:由題意得:樣本平均數(shù)x=15(125+124+121+123+127)=124,樣本方差s2=15(12+02+32+12+32)=4,∴s=2.故為2.50.一個(gè)單位有職工800人,其中具有高級(jí)職稱的160人,具有中級(jí)職稱的320人,具有初級(jí)職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級(jí)職稱的職工為10人,則樣本容量為()

A.10

B.20

C.40

D.50答案:C第2卷一.綜合題(共50題)1.(1+2x)7的展開式中第4項(xiàng)的系數(shù)是______

(用數(shù)字作答)答案:(1+2x)7的展開式的通項(xiàng)為Tr+1=Cr7?(2x)r∴(1+2x)7的展開式中第4項(xiàng)的系數(shù)是C37?23=280,故為:280.2.設(shè)向量不共面,則下列集合可作為空間的一個(gè)基底的是(

A.{}

B.{}

C.{}

D.{}

答案:C3.點(diǎn)(1,2)到原點(diǎn)的距離為()

A.1

B.5

C.

D.2答案:C4.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______

種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:4805.下列有關(guān)相關(guān)指數(shù)R2的說法正確的有()

A.R2的值越大,說明殘差平方和越小

B.R2越接近1,表示回歸效果越差

C.R2的值越小,說明殘差平方和越小

D.如果某數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,一般選擇R2小的模型作為這組數(shù)據(jù)的模型答案:A6.已知隨機(jī)變量X滿足D(X)=2,則D(3X+2)=()

A.2

B.8

C.18

D.20答案:C7.判斷下列結(jié)出的輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句是否正確?為什么?

(1)輸出語(yǔ)句INPUT

a;b;c

(2)輸入語(yǔ)句INPUT

x=3

(3)輸出語(yǔ)句PRINT

A=4

(4)輸出語(yǔ)句PRINT

20.3*2

(5)賦值語(yǔ)句3=B

(6)賦值語(yǔ)句

x+y=0

(7)賦值語(yǔ)句A=B=2

(8)賦值語(yǔ)句

T=T*T.答案:(1)輸入語(yǔ)句

INPUT

a;b;c中,變量名之間應(yīng)該用“,”分隔,而不能用“;”分隔,故(1)錯(cuò)誤;(2)輸入語(yǔ)句INPUT

x=3中,命令動(dòng)詞INPUT后面應(yīng)寫成“x=“,3,故(2)錯(cuò)誤;(3)輸出語(yǔ)句PRINT

A=4中,命令動(dòng)詞PRINT后面應(yīng)寫成“A=“,4,故(3)錯(cuò)誤;(4)輸出語(yǔ)句PRINT

20.3*2符合規(guī)則,正確;(5)賦值語(yǔ)句

3=B中,賦值號(hào)左邊必須為變量名,故(5)錯(cuò)誤;(6)賦值語(yǔ)句

x+y=0中,賦值號(hào)左邊不能是表達(dá)式,故(6)錯(cuò)誤;(7)賦值語(yǔ)句

A=B=2中.賦值語(yǔ)句不能連續(xù)賦值,故(7)錯(cuò)誤;(8)賦值語(yǔ)句

T=T*T是,符合規(guī)則,正確;故正確的有(4)、(8)錯(cuò)誤的是(1)、(2)、(3)、(5)、(6)、(7).8.已知中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的和為92,離心率為35的橢圓的標(biāo)準(zhǔn)方程為______.答案:由題意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴橢圓的標(biāo)準(zhǔn)方程為x250+y232=1或y250+x232=1.故為x250+y232=1或y250+x232=1.9.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為______.答案:設(shè)直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.10.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1與

B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.11.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2

012”時(shí),一定有“x2>2

011”,反之不成立.所以“x2>2

012”是“x2>2

011”的充分不必要條件.故選A.12.若f(x)=exx≤0lnxx>0,則f(f(12))=______.答案:∵f(x)=ex,x≤0lnx,x>0,∴f(f(12))=f(ln12)=eln12=12.故為:12.13.已知直線l1,l2的夾角平分線所在直線方程為y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()

A.bx+ay+c=0

B.a(chǎn)x-by+c=0

C.bx+ay-c=0

D.bx-ay+c=0答案:A14.下列賦值語(yǔ)句中正確的是()

A.m+n=3

B.3=i

C.i=i2+1

D.i=j=3答案:C15.如果:在10進(jìn)制中2004=4×100+0×101+0×102+2×103,那么類比:在5進(jìn)制中數(shù)碼2004折合成十進(jìn)制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.16.下面程序框圖輸出的S表示什么?虛線框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時(shí),輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個(gè)順序結(jié)構(gòu).17.例3.設(shè)a>0,b>0,解關(guān)于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化為ax-2≥bx或ax-2≤-bx,(1)對(duì)于不等式ax-2≤-bx,即(a+b)x≤2

因?yàn)閍>0,b>0即:x≤2a+b.(2)對(duì)于不等式ax-2≥bx,即(a-b)x≥2①當(dāng)a>b>0時(shí),由①得x≥2a-b,∴此時(shí),原不等式解為:x≥2a-b或x≤2a+b;當(dāng)a=b>0時(shí),由①得x∈?,∴此時(shí),原不等式解為:x≤2a+b;當(dāng)0<a<b時(shí),由①得x≤2a-b,∴此時(shí),原不等式解為:x≤2a+b.綜上可得,當(dāng)a>b>0時(shí),原不等式解集為(-∞,2a+b]∪[2a-b,+∞),當(dāng)0<a≤b時(shí),原不等式解集為(-∞,2a+b].18.下列物理量中,不能稱為向量的是()A.質(zhì)量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;質(zhì)量只有大小沒有方向,因此質(zhì)量不是向量.而速度、位移、力既有大小,又有方向,因此它們都是向量.故選A.19.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|

=7,故為7.20.從⊙O外一點(diǎn)P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點(diǎn).求證:ACBC=ADBD.

答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.21.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個(gè)數(shù)為______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個(gè)數(shù)為8.故為:822.設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.23.方程組的解集為()

A.{2,1}

B.{1,2}

C.{(2,1)}

D.(2,1)答案:C24.(2x+1)5的展開式中的第3項(xiàng)的系數(shù)是()A.10B.40C.80D.120答案:(2x+1)5的展開式中的第3項(xiàng)為T3=C25(2x)3

×1=80x3,故(2x+1)5的展開式中的第3項(xiàng)的系數(shù)是80,故選C.25.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:326.某自動(dòng)化儀表公司組織結(jié)構(gòu)如圖所示,其中采購(gòu)部的直接領(lǐng)導(dǎo)是()

A.副總經(jīng)理(甲)

B.副總經(jīng)理(乙)

C.總經(jīng)理

D.董事會(huì)

答案:B27.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個(gè)交點(diǎn),則該函數(shù)的所有零點(diǎn)之和為()A.4B.2C.1D.0答案:因?yàn)楹瘮?shù)f(x)為偶函數(shù),所以函數(shù)圖象關(guān)于y軸對(duì)稱.又其圖象與x軸有四個(gè)交點(diǎn),所以四個(gè)交點(diǎn)關(guān)于y軸對(duì)稱,不妨設(shè)四個(gè)交點(diǎn)的橫坐標(biāo)為x1,x2,x3,x4,則根據(jù)對(duì)稱性可知x1+x2+x3+x4=0.故選D.28.某年級(jí)共有210名同學(xué)參加數(shù)學(xué)期中考試,隨機(jī)抽取10名同學(xué)成績(jī)?nèi)缦拢?/p>

成績(jī)(分)506173859094人數(shù)221212則總體標(biāo)準(zhǔn)差的點(diǎn)估計(jì)值為______(結(jié)果精確到0.01).答案:由題意知本題需要先做出這組數(shù)據(jù)的平均數(shù)50×2+61×2+73+2×85+90+2×9410=74.9,這組數(shù)據(jù)的總體方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴總體標(biāo)準(zhǔn)差是309.76≈17.60,故為:17.60.29.(1)用紅、黃、藍(lán)、白四種不同顏色的鮮花布置如圖一所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域用不同顏色鮮花,問共有多少種不同的擺放方案?

(2)用紅、黃、藍(lán)、白、橙五種不同顏色的鮮花布置如圖二所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域使用不同顏色鮮花.

①求恰有兩個(gè)區(qū)域用紅色鮮花的概率;

②記花圃中紅色鮮花區(qū)域的塊數(shù)為S,求它的分布列及其數(shù)學(xué)期望E(S).

答案:(1)根據(jù)分步計(jì)數(shù)原理,擺放鮮花的不同方案有:4×3×2×2=48種(2)①設(shè)M表示事件“恰有兩個(gè)區(qū)域用紅色鮮花”,如圖二,當(dāng)區(qū)域A、D同色時(shí),共有5×4×3×1×3=180種;當(dāng)區(qū)域A、D不同色時(shí),共有5×4×3×2×2=240種;因此,所有基本事件總數(shù)為:180+240=420種.(由于只有A、D,B、E可能同色,故可按選用3色、4色、5色分類計(jì)算,求出基本事件總數(shù)為A53+2A51+A55=420種)它們是等可能的.又因?yàn)锳、D為紅色時(shí),共有4×3×3=36種;B、E為紅色時(shí),共有4×3×3=36種;因此,事件M包含的基本事件有:36+36=72種.所以,P(M)=72420=635②隨機(jī)變量ξ的分布列為:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=130.已知點(diǎn)E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點(diǎn)E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因?yàn)辄c(diǎn)E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個(gè)平行四邊形的起點(diǎn)為A的對(duì)角線上,又平行四邊形對(duì)角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.31.已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點(diǎn)A,B.

(1)求橢圓C的方程;

(2)求弦AB的長(zhǎng)度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]

=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)32.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,此伸縮變換公式是(

)A.B.C.D.答案:B解析:解:因?yàn)樵谄矫嬷苯亲鴺?biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,設(shè)變換為,將其代入方程中,得到x,y的關(guān)系式,對(duì)應(yīng)相等可知,選B33.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),則(a+b)?c=______.答案:由于a=(3,3,2),b=(4,-3,7),則a+b=(7,0,9)又由c=(0,5,1),則(a+b)?c=(7,0,9)?(0,5,1)=9故為934.如圖,半徑為R的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與該圓柱的側(cè)面積之差是______.

答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當(dāng)且僅當(dāng)α=π4時(shí),sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR235.當(dāng)a>0時(shí),不等式組的解集為(

)。答案:當(dāng)a>時(shí)為;當(dāng)a=時(shí)為{};當(dāng)0<a<時(shí)為[a,1-a]36.已知

|x|<a,|y|<a.求證:|xy|<a.答案:證明:∵0<|x|<a,0<|y|<a∴由不等式的性質(zhì),可得|xy|<a37.點(diǎn)P(1,2,2)到原點(diǎn)的距離是()

A.9

B.3

C.1

D.5答案:B38.設(shè)P點(diǎn)在x軸上,Q點(diǎn)在y軸上,PQ的中點(diǎn)是M(-1,2),則|PQ|等于______.答案:設(shè)P(a,0),Q(0,b),∵PQ的中點(diǎn)是M(-1,2),∴由中點(diǎn)坐標(biāo)公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:2539.若一元二次方程ax2+2x+1=0有一個(gè)正根和一個(gè)負(fù)根,則有

A.a(chǎn)<0

B.a(chǎn)>0

C.a(chǎn)<-1

D.a(chǎn)>1答案:A40.有一矩形紙片ABCD,按圖所示方法進(jìn)行任意折疊,使每次折疊后點(diǎn)B都落在邊AD上,將B的落點(diǎn)記為B′,其中EF為折痕,點(diǎn)F也可落在邊CD上,過B′作B′H∥CD交EF于點(diǎn)H,則點(diǎn)H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點(diǎn)H到定點(diǎn)B的距離以及到定直線AD的距離相等,根據(jù)拋物線的定義可知:點(diǎn)H的軌跡為:拋物線,(拋物線的一部分)故選D.41.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()

A.在圓內(nèi)

B.在圓外

C.在圓上

D.與t有關(guān)答案:C42.圓(x+3)2+(y-1)2=25上的點(diǎn)到原點(diǎn)的最大距離是()

A.5-

B.5+

C

D.10答案:B43.已知a=20.5,,,則a,b,c的大小關(guān)系是()

A.a(chǎn)>c>b

B.a(chǎn)>b>c

C.c>b>a

D.c>a>b答案:B44.若a,b∈{2,3,4,5,7},則可以構(gòu)成不同的橢圓的個(gè)數(shù)為()

A.10

B.20

C.5

D.15答案:B45.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運(yùn)會(huì)開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個(gè)年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個(gè)年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D46.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說法正確的是()

A.若K2的觀測(cè)值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病

B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯(cuò)誤

D.以上三種說法都不正確答案:C47.構(gòu)成多面體的面最少是()

A.三個(gè)

B.四個(gè)

C.五個(gè)

D.六個(gè)答案:B48.已知x∈{1,2,x2},則實(shí)數(shù)x=______.答案:∵x∈{1,2,x2},分情況討論可得:①x=1此時(shí)集合為{1,2,1}不合題意②x=2此時(shí)集合為{1,2,4}合題意③x=x2解得x=0或x=1當(dāng)x=0時(shí)集合為{1,2,0}合題意故為0或2.49.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點(diǎn)共圓.50.對(duì)于一組數(shù)據(jù)的兩個(gè)函數(shù)模型,其殘差平方和分別為153.4

和200,若從中選取一個(gè)擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個(gè).答案:殘差的平方和是用來描述n個(gè)點(diǎn)與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個(gè)模型.故為:153.4.第3卷一.綜合題(共50題)1.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對(duì)其中6題,乙能答對(duì)其中8題.若規(guī)定每次考試分別都從這10題中隨機(jī)抽出3題進(jìn)行測(cè)試,至少答對(duì)2題算合格.

(1)分別求甲、乙兩人考試合格的概率;

(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨(dú)立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.2.口袋中裝有三個(gè)編號(hào)分別為1,2,3的小球,現(xiàn)從袋中隨機(jī)取球,每次取一個(gè)球,確定編號(hào)后放回,連續(xù)取球兩次.則“兩次取球中有3號(hào)球”的概率為()A.59B.49C.25D.12答案:每次取球時(shí),出現(xiàn)3號(hào)球的概率為13,則兩次取得球都是3號(hào)求得概率為C22?(13)2=19,兩次取得球只有一次取得3號(hào)求得概率為C12?13?23=49,故“兩次取球中有3號(hào)球”的概率為19+49=59,故選A.3.在(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項(xiàng)的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項(xiàng)的系數(shù)是C31+C41+C51+…+C71=25故為:254.乒乓球單打比賽在甲、乙兩名運(yùn)動(dòng)員間進(jìn)行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同,那么甲以4比2獲勝的概率為()

A.

B.

C.

D.答案:D5.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點(diǎn)P的極坐標(biāo)為(2,π2),過點(diǎn)P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點(diǎn)P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.6.若集合S={a,b,c}(a、b、c∈R)中三個(gè)元素為邊可構(gòu)成一個(gè)三角形,那么該三角形一定不可能是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D7.圓x2+y2=1在矩陣A={}對(duì)應(yīng)的變換下,得到的曲線的方程是()

A.=1

B.=1

C.=1

D.=1答案:C8.下列說法正確的是()

A.互斥事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件

B.互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件

C.事件A,B中至少有一個(gè)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率大

D.事件A,B同時(shí)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率小答案:B9.下列4個(gè)命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時(shí),()x<1,而>1.p4正確10.圓C1:x2+y2-6x+6y-48=0與圓C2:x2+y2+4x-8y-44=0公切線的條數(shù)是()

A.0條

B.1條

C.2條

D.3條答案:C11.若函數(shù)f(x)=x+1的值域?yàn)椋?,3],則函數(shù)f(x)的定義域?yàn)開_____.答案:∵f(x)=x+1的值域?yàn)椋?,3],∴2<x+1≤3∴1<x≤2故為:(1,2]12.方程ax2+2x+1=0至少有一個(gè)負(fù)的實(shí)根的充要條件是()

A.0<a≤1

B.a(chǎn)<1

C.a(chǎn)≤1

D.0<a≤1或a<0答案:C13.已知隨機(jī)變量ξ服從正態(tài)分布N(1,δ2)(δ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為(

A.

B.

C.

D.答案:D14.如圖,△ABC是圓的內(nèi)接三角形,PA切圓于點(diǎn)A,PB交圓于點(diǎn)D.若∠ABC=60°,PD=1,BD=8,則∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割線定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,315.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,則點(diǎn)P的縱坐標(biāo)為______.答案:由題意,P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,故可分為兩類:①當(dāng)∠P為直角時(shí),設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn)∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時(shí),P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33

或1216.在平面直角坐標(biāo)系中,雙曲線Γ的中心在原點(diǎn),它的一個(gè)焦點(diǎn)坐標(biāo)為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線的方向向量.任取雙曲線Γ上的點(diǎn)P,若OP=ae1+be2(a、b∈R),則a、b滿足的一個(gè)等式是______.答案:因?yàn)閑1=(2,1)、e2=(2,-1)是漸進(jìn)線方向向量,所以雙曲線漸近線方程為y=±12x,又c=5,∴a=2,b=1雙曲線方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡(jiǎn)得4ab=1.故為4ab=1.17.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故為:34.18.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點(diǎn),在以A、B、C、D、E、F為端點(diǎn)的有向線段中所表示的向量中,

(1)與向量FE共線的有

______.

(2)與向量DF的模相等的有

______.

(3)與向量ED相等的有

______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.19.若一輛汽車每天行駛的路程比原來多19km,則該汽車在8天內(nèi)行駛的路程s(km)就超過2200km;若它每天行駛的路程比原來少12km,則它行駛同樣的路程s(km)就得花9天多的時(shí)間。這輛汽車原來每天行駛的路程(km)的范圍是(

A.(259,260)

B.(258,260)

C.(257,260)

D.(256,260)答案:D20.若直線的參數(shù)方程為,則直線的斜率為(

)A.B.C.D.答案:D21.賦值語(yǔ)句n=n+1的意思是()

A.n等于n+1

B.n+1等于n

C.將n的值賦給n+1

D.將n的值增加1,再賦給n,即n的值增加1答案:D22.如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長(zhǎng)線相交于點(diǎn)E,連接CE并延長(zhǎng)交圓O于點(diǎn)F,連接AF.

(1)求證:B,C,E,D四點(diǎn)共圓;

(2)當(dāng)AB=12,tan∠EAF=23時(shí),求圓O的半徑.答案:(1)由切割線定理PA2=PB?PC由已知易得Rt△PAD∽R(shí)t△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD為公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四點(diǎn)共圓

(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圓O的半徑313.23.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn).已知OP1=(1,0),則OP2010的坐標(biāo)為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項(xiàng),1為公差的等差數(shù)列∴OP2010的坐標(biāo)為(1,2009)故為(1,2009)24.參數(shù)方程(θ為參數(shù))化為普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D25.用數(shù)學(xué)歸納法證明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,當(dāng)n=1時(shí),左端為______.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,當(dāng)n=1時(shí),3n+1=4,而等式左邊起始為1×4的連續(xù)的正整數(shù)積的和,故n=1時(shí),等式左端=1×4=4故為:4.26.若向量?jī)蓛伤傻慕窍嗟?,且,則等于()

A.2

B.5

C.2或5

D.或答案:C27.下列語(yǔ)句是命題的是______.

①求證3是無理數(shù);

②x2+4x+4≥0;

③你是高一的學(xué)生嗎?

④一個(gè)正數(shù)不是素?cái)?shù)就是合數(shù);

⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因?yàn)閤2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因?yàn)閤2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.28.點(diǎn)M的直角坐標(biāo)為(,1,-2),則它的柱坐標(biāo)為()

A.(2,,2)

B.(2,,2)

C.(2,,-2)

D.(2,-,-2)答案:C29.設(shè)是的相反向量,則下列說法一定錯(cuò)誤的是()

A.∥

B.與的長(zhǎng)度相等

C.是的相反向量

D.與一定不相等答案:D30.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個(gè)邊長(zhǎng)為a的正方形和1個(gè)邊長(zhǎng)為b的正方形以及4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個(gè)邊長(zhǎng)為c的正方形和4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.因?yàn)檫@兩個(gè)正方形的面積相等(邊長(zhǎng)都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡(jiǎn)得a2+b2=c2.下面是一個(gè)錯(cuò)誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理證明:作兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b(b>a),斜邊長(zhǎng)為c.再做一個(gè)邊長(zhǎng)為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過點(diǎn)Q作QP∥BC,交AC于點(diǎn)P.過點(diǎn)B作BM⊥PQ,垂足為M;再過點(diǎn)F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個(gè)矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c231.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()

A.5

B.

C.

D.答案:C32.若數(shù)列{an}是等差數(shù)列,對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質(zhì),若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,對(duì)于dn>0,則dn=______時(shí),數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時(shí),我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)dn=nC1C2C3Cn時(shí),數(shù)列{dn}也是等比數(shù)列.故為:nC1C2C3Cn33.設(shè)f(x)=ex(x≤0)ln

x(x>0),則f[f(13)]=______.答案:因?yàn)閒(x)=ex(x≤0)ln

x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故為13.34.(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長(zhǎng)為______.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時(shí),x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時(shí),有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時(shí),有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.35.設(shè)向量與的夾角為θ,,,則cosθ等于()

A.

B.

C.

D.答案:D36.已知正方形ABCD的邊長(zhǎng)為1,=,=,=,則|++|等于(

A.0

B.2

C.

D.3答案:B37.在直角坐標(biāo)系xoy

中,已知曲線C1:x=t+1y=1-2t(t為參數(shù))與曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0

有一個(gè)公共點(diǎn)在X軸上,則a等于______.答案:曲線C1:x=t+1y=1-2t(t為參數(shù))化為普通方程:2x+y-3=0,令y=0,可得x=32曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0

)化為普通方程:x2a2+y29=1∵兩曲線有一個(gè)公共點(diǎn)在x軸上,∴94a2=1∴a=32故為:3238.點(diǎn)A(-,1)關(guān)于y軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(

A.(-,-1)

B.(,-1)

C.(-,1)

D.(,1)答案:D39.若方程x2+y2+kx+2y+k2-11=0表示的曲線是圓,則實(shí)數(shù)k的取值范圍是______.如果過點(diǎn)(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則實(shí)數(shù)k的取值范圍是______.答案:方程x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24,由于它表示的曲線是圓,∴48-3k24>0,解得-4<k<4.圓x2+y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論