版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.2.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.3.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()4.已知為虛數單位,若復數滿足,則()A. B. C. D.5.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件6.已知非零向量,滿足,,則與的夾角為()A. B. C. D.7.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.8.已知函數的最小正周期為,且滿足,則要得到函數的圖像,可將函數的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度9.已知函數,則的值等于()A.2018 B.1009 C.1010 D.202010.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.11.已知是函數圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.12.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是夾角為的兩個單位向量,若,,則與的夾角為______.14.有以下四個命題:①在中,的充要條件是;②函數在區(qū)間上存在零點的充要條件是;③對于函數,若,則必不是奇函數;④函數與的圖象關于直線對稱.其中正確命題的序號為______.15.如圖,從一個邊長為的正三角形紙片的三個角上,沿圖中虛線剪出三個全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個缺少上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱柱的上底,則所得正三棱柱的體積為______.16.已知,,,則的最小值是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,a、b、c分別為角A、B、C的對邊,且.(1)求角A的值;(2)若,設角,周長為y,求的最大值.18.(12分)已知函數.(1)當時,試求曲線在點處的切線;(2)試討論函數的單調區(qū)間.19.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.20.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間的一組數據,且作了一定的數據處理(如下表),得到了散點圖(如下圖).表中,.(1)根據散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數的回歸方程類型?(不必說明理由)(2)根據判斷結果和表中數據,建立關于的回歸方程;(3)若單位時間內煤氣輸出量與旋轉的弧度數成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數據,其回歸直線的斜率和截距的最小二乘法估計值分別為,21.(12分)設拋物線過點.(1)求拋物線C的方程;(2)F是拋物線C的焦點,過焦點的直線與拋物線交于A,B兩點,若,求的值.22.(10分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
設直線為,用表示出,,求出,令,利用導數求出單調區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設直線為,則,,而滿足,那么設,則,函數在上單調遞減,在上單調遞增,所以故選:.【點睛】本題考查導數知識的運用:求單調區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導確定函數的最小值是關鍵,屬于中檔題.2.A【解析】
設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.3.D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.4.A【解析】分析:題設中復數滿足的等式可以化為,利用復數的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數的四則運算和復數概念中的共軛復數,屬于基礎題.5.C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結果.詳解:由題意可得,在中,因為,所以,因為,所以,,結合三角形內角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.6.B【解析】
由平面向量垂直的數量積關系化簡,即可由平面向量數量積定義求得與的夾角.【詳解】根據平面向量數量積的垂直關系可得,,所以,即,由平面向量數量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數量積的運算,平面向量夾角的求法,屬于基礎題.7.B【解析】
先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.8.C【解析】
依題意可得,且是的一條對稱軸,即可求出的值,再根據三角函數的平移規(guī)則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數的性質以及三角函數的變換規(guī)則,屬于基礎題.9.C【解析】
首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.10.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.11.C【解析】
先畫出函數圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數,利用導數求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數量積的最小值,利用了導數求解,考查了轉化思想和運算能力,屬于難題.12.D【解析】
可過點S作SF∥OE,交AB于點F,并連接CF,從而可得出∠CSF(或補角)為異面直線SC與OE所成的角,根據條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點S作SF∥OE,交AB于點F,連接CF,則∠CSF(或補角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關系,平行線分線段成比例的定理,考查了計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
依題意可得,再根據求模,求數量積,最后根據夾角公式計算可得;【詳解】解:因為是夾角為的兩個單位向量所以,又,所以,,所以,因為所以;故答案為:【點睛】本題考查平面向量的數量積的運算律,以及夾角的計算,屬于基礎題.14.①【解析】
由三角形的正弦定理和邊角關系可判斷①;由零點存在定理和二次函數的圖象可判斷②;由,結合奇函數的定義,可判斷③;由函數圖象對稱的特點可判斷④.【詳解】解:①在中,,故①正確;②函數在區(qū)間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數,若,滿足,但可能為奇函數,故③錯誤;④函數與的圖象,可令,即,即有和的圖象關于直線對稱,即對稱,故④錯誤.故答案為:①.【點睛】本題主要考查函數的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.15.1【解析】
由題意得正三棱柱底面邊長6,高為,由此能求出所得正三棱柱的體積.【詳解】如圖,作,交于,,由題意得正三棱柱底面邊長,高為,所得正三棱柱的體積為:.故答案為:1.【點睛】本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結構特征等基礎知識,考查空間想象能力、運算求解能力,求解時注意翻折前后的不變量.16..【解析】
因為,展開后利用基本不等式,即可得到本題答案.【詳解】由,得,所以,當且僅當,取等號.故答案為:【點睛】本題主要考查利用基本不等式求最值,考查學生的轉化能力和運算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)利用正弦定理,結合題中條件,可以得到,之后應用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周長,利用三角函數的最值求解即可.【詳解】(1)由已知可得,結合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴當,即時,.【點睛】該題主要考查的是有關解三角形的問題,解題的關鍵是掌握正余弦定理,屬于簡單題目.18.(1);(2)見解析【解析】
(1)對函數進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數進行求導,對實數進行分類討論,可以求出函數的單調區(qū)間.【詳解】(1)當時,函數定義域為,,所以切線方程為;(2)當時,函數定義域為,在上單調遞增當時,恒成立,函數定義域為,又在單調遞增,單調遞減,單調遞增當時,函數定義域為,在單調遞增,單調遞減,單調遞增當時,設的兩個根為且,由韋達定理易知兩根均為正根,且,所以函數的定義域為,又對稱軸,且,在單調遞增,單調遞減,單調遞增【點睛】本題考查了曲線切線方程的求法,考查了利用函數的導數討論函數的單調性問題,考查了分類思想.19.(1)不在,證明見詳解;(2)【解析】
(1)假設直線方程,并于拋物線方程聯(lián)立,結合韋達定理,計算,可得,然后驗證可得結果.(2)分別計算線段中垂線的方程,然后聯(lián)立,根據(1)的條件可得點的軌跡方程,然后可得焦點,結合拋物線定義可得,計算可得結果.【詳解】(1)設直線方程,根據題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以【點睛】本題考查直線于拋物線的綜合應用,第(1)問中難點在于計算處,第(2)問中關鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結合韋達定理,屬難題.20.(1)選取更合適;(2);(3)時,煤氣用量最小.【解析】
(1)根據散點圖的特點,可得更適合;(2)先建立關于的回歸方程,再得出關于的回歸方程;(3)寫出函數關系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時間關于開關旋鈕旋轉的弧度數的回歸方程類型;(2)由公式可得:,,所以所求回歸直線方程為:;(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 造型的表現(xiàn)力 課件 2024-2025學年人教版初中美術八年級上冊
- 人教新目標Go For It!八年級上冊 Unit 6 I'm going to study computer science. Section B
- 核電汽輪機的特點
- 常見慢性病的防治
- 2024年四川省宜賓市初二年級學業(yè)水平考試地理試卷含答案
- 2014年大輸液行業(yè)市場分析報告
- 2024至2030年中國成套電控裝置數據監(jiān)測研究報告
- 2013-2016年中國那曲電信移動市場發(fā)展狀況分析研究報告
- 2024至2030年中國噴油嘴檢測清洗儀數據監(jiān)測研究報告
- 2024至2030年中國單人溫步機數據監(jiān)測研究報告
- 材料酸洗加工合同
- 大疆企業(yè)技術發(fā)展分析及啟示以創(chuàng)新驅動未來
- 人教部編版語文七年級上冊第二單元作業(yè)設計
- 預防患者自殺應急預案課件
- 包裝方案設計
- 白銀集團公司招聘筆試題目
- 小學科學教科版六年級上冊全冊課課練(含答案)(2023秋)
- 護理實訓室文化墻建設方案
- 《放射防護知識培訓》課件
- 《國際貿易實務》課件
- 16號線01標起點-北安河站工程施工組織設計
評論
0/150
提交評論