版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
HYPERLINK""河南專升本高數(shù)總共分為十二個章節(jié),下面耶魯小編把每個章節(jié)的考點為大家整理出來,希望大家都能在明年的河南專升本考試中取得一個滿意的好成績。第一章、函數(shù)、極限和連續(xù)考點一:求函數(shù)的定義域考點二:判斷函數(shù)是否為同一函數(shù)考點三:求復合函數(shù)的函數(shù)值或復合函數(shù)的外層函數(shù)考點四:擬定函數(shù)的奇偶性、有界性等性質(zhì)的問題考點五:有關(guān)反函數(shù)的問題考點六:有關(guān)極限概念及性質(zhì)、法則的題目考點七:簡樸函數(shù)求極限或極限的反問題考點八:無窮小量問題考點九:分段函數(shù)求待定常數(shù)或討論分段函數(shù)的連續(xù)性考點十:指出函數(shù)間斷點的類型考點十一:運用零點定理擬定方程根的存在性或證明具有的等式考點十二:求復雜函數(shù)的極限第二章、導數(shù)與微分考點一:運用導數(shù)定義求導數(shù)或極限考點二:簡樸函數(shù)求導數(shù)考點三:參數(shù)方程擬定函數(shù)的導數(shù)考點四:隱函數(shù)求導數(shù)考點五:復雜函數(shù)求導數(shù)考點六:求函數(shù)的高階導數(shù)考點七:求曲線的切線或法線方程或斜率問題考點八:求各種函數(shù)的微分第三章、導數(shù)的應用考點一:指出函數(shù)在給定區(qū)間上是否滿足羅爾定理、拉格朗日定理或滿足定理求定理中的值考點二:運用羅爾定理證明方程根的存在性或具有的等式考點三:運用拉格朗日定理證明連體不等式考點四:洛必達法則求極限考點五:求函數(shù)的極值或極值點考點六:運用函數(shù)單調(diào)性證明單體不等式考點七:運用函數(shù)單調(diào)性證明方程根的唯一性考點八:求曲線的凹向區(qū)間考點九:求曲線的拐點坐標考點十:求曲線某種形式的漸近線考點十一:一元函數(shù)最值得實際應用問題第四章、不定積分考點一:涉及原函數(shù)與不定積分的關(guān)系,不定積分性質(zhì)的題目考點二:求不定積分的方法考點三:求三種特殊函數(shù)的不定積分第五章、定積分考點一:定積分概念、性質(zhì)和幾何意義等題目考點二:涉及變上限函數(shù)的題目考點三:求定積分的方考點四:求幾種特殊函數(shù)的定積分考點五:積分等式的證明考點六:判斷廣義積分收斂或發(fā)散第六章、定積分的應用考點:直角坐標系下已知平面圖形,求面積及這個平面圖形繞坐標走旋轉(zhuǎn)一周得到的旋轉(zhuǎn)體的體積第七章、向量代數(shù)與空間解析幾何考點一:有關(guān)向量之間的運算問題考點二:求空間平面或直線方程考點三:擬定直線與直線,直線與平面,平面與平面的位置關(guān)系;或已知位置關(guān)系求待定系數(shù)考點四:由方程辨認空間曲面或曲線的類型考點五:寫出旋轉(zhuǎn)曲面方程和投影柱面方程第八章、多元函數(shù)的微分及應用考點一:求二元函數(shù)定義域考點二:求二元函數(shù)的復合函數(shù)或求復合函數(shù)的外層函數(shù)考點三:求多元函數(shù)的極限考點四:求簡樸函數(shù)的偏導數(shù)或某點導數(shù)考點五:求簡樸函數(shù)全微分或高階偏導數(shù)考點六:復雜函數(shù)(特別是含符號f)的求偏導數(shù)或全微分或高階導數(shù)考點七:隱函數(shù)的求偏導數(shù)或全微分考點八:求空間曲面的切平面或法線方程;求空間曲線的切線和法線方程考點九:求函數(shù)的方向倒數(shù)和梯度考點十:求二元函數(shù)的極值或極值點、駐點考點十一:多元函數(shù)有關(guān)概念的問題考點十二:二元函數(shù)最值的實際應用問題第九章、二重積分考點一:運用二重積分性質(zhì)和幾何意義等基本問題考點二:直角坐標系下計算二重積分考點三:直角坐標系下兩種累次積分順序互換考點四:在極坐標系下計算二重積分考點五:兩種坐標系下二重積分互換第十章、曲線積分考點一:計算對弧長的曲線積分考點二:計算對坐標的曲線積分第十一章、無窮級數(shù)考點一:有關(guān)級數(shù)收斂定義和性質(zhì)的題目考點二:指出數(shù)項級數(shù)的收斂、發(fā)散、條件收斂、絕對收斂考點三:擬定冪級數(shù)在某點處是否收斂或發(fā)散考點四:求冪級數(shù)的收斂域或收斂區(qū)間考點五:運用公式把簡樸函數(shù)展開成冪級數(shù)考點六:求數(shù)項級數(shù)的和或冪級數(shù)的和函數(shù)第十二章、常微分方程考點一:涉及微分方程有關(guān)概念的基本問題考點二:求可分離變量的微分方程的通解和特解考點三:涉及可變量微分方程的實際應用問題考點四:求齊次微分方程的通解或特解考點五:求一階線性微分方程通解考點六:求通解或特解考點七:求通解或特解考點八:設(shè)出通解或特解考點九:求通解或特解高數(shù)的復習知識點比較多,邏輯性比較強,大家在復習的時候一定要按照以上老師總結(jié)的考點重點的加以復習備考。高等數(shù)學綱要本大綱對內(nèi)容的規(guī)定由低到高,對概念和理論分為“了解”和“理解”兩個層次;對方法和運算分為“會”、“掌握”和“純熟掌握”三個層次。復習考試內(nèi)容一、函數(shù)、極限和連續(xù)(一)函數(shù)1、知識范圍(1)函數(shù)的概念函數(shù)的定義函數(shù)的表達法分段函數(shù)隱函數(shù)(2)函數(shù)的性質(zhì)單調(diào)性奇偶性有界性周期性(3)反函數(shù)反函數(shù)的定義反函數(shù)的圖像(4)基本初等函數(shù)冪函數(shù)指數(shù)函數(shù)對數(shù)函數(shù)三角函數(shù)反三角函數(shù)(5)函數(shù)的四則運算與復合運算(6)初等函數(shù)2、規(guī)定(1)理解函數(shù)的概念。會求函數(shù)的表達式、定義域及函數(shù)值。會求分段函數(shù)的定義域、函數(shù)值,會作出簡樸的分段函數(shù)的圖像。(2)理解函數(shù)的單調(diào)性、奇偶性、有界性和周期性。(3)了解函數(shù)與其反函數(shù)之間的關(guān)系(定義域、值域、圖像),會求單調(diào)函數(shù)的反函數(shù)。(4)純熟掌握函數(shù)的四則運算與復合運算。(5)掌握基本初等函數(shù)的性質(zhì)及其圖像。(6)了解初等函數(shù)的概念。(7)會建立簡樸實際問題的函數(shù)關(guān)系式。(二)極限1、知識范圍(1)數(shù)列極限的概念數(shù)列數(shù)列極限的定義(2)數(shù)列極限的性質(zhì)唯一性有界性四則運算法則夾逼定理單調(diào)有界數(shù)列極限存在定理(3)函數(shù)極限的概念函數(shù)在一點處極限的定義左、右極限及其與極限的關(guān)系趨于無窮時函數(shù)的極限函數(shù)極限的幾何意義(4)函數(shù)極限的性質(zhì)唯一性四則運算法則夾通定理(5)無窮小量與無窮大量無窮小量與無窮大量的定義無窮小量與無窮大量的關(guān)系無窮小量的性質(zhì)無窮小量的階(6)兩個重要極限2、規(guī)定(1)理解極限的概念(對極限定義中“”、“”、“”等形式的描述不作規(guī)定)。會求函數(shù)在一點處的左極限與右極限,了解函數(shù)在一點處極限存在的充足必要條件。(2)了解極限的有關(guān)性質(zhì),掌握極限的四則運算法則。(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關(guān)系。會進行無窮小量階的比較(高階、低階、同階和等價)。會運用等價無窮小量代換求極限。(4)純熟掌握用兩個重要極限求極限的方法。(三)連續(xù)1、知識范圍(1)函數(shù)連續(xù)的概念函數(shù)在一點處連續(xù)的定義左連續(xù)與右連續(xù)函數(shù)在一點處連續(xù)的充足必要條件函數(shù)的間斷點及其分類(2)函數(shù)在一點處連續(xù)的性質(zhì)連續(xù)函數(shù)的四則運算復合函數(shù)的連續(xù)性反函數(shù)的連續(xù)性(3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)有界性定理最大值與最小值定理介值定理(涉及零點定理)(4)初等函數(shù)的連續(xù)性2、規(guī)定(1)理解函數(shù)在一點處連續(xù)與間斷的概念,理解函數(shù)在一點處連續(xù)與極限存在的關(guān)系,掌握判斷函數(shù)(含分段函數(shù))在一點處的連續(xù)性的方法。(2)會求函數(shù)的間斷點及擬定其類型。(3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會用介值定理推證一些簡樸命題。(4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會運用連續(xù)性求極限。二、一元函數(shù)微分學(一)導數(shù)與微分1、知識范圍(1)導數(shù)概念導數(shù)的定義左導數(shù)與右導數(shù)函數(shù)在一點處可導的充足必要條件導數(shù)的幾何意義與物理意義可導與連續(xù)的關(guān)系(2)求導法則與導數(shù)的基本公式導數(shù)的四則運算反函數(shù)的導數(shù)導數(shù)(二)定積分1、知識范圍(1)定積分的概念定積分的定義及其幾何意義可積條件(2)定積分的性質(zhì)(3)定積分的計算變上限積分牛頓—萊布尼茨(Newton-Leibniz)公式換元積分法分部積分法(4)無窮區(qū)間的廣義積分(5)定積分的應用平面圖形的面積旋轉(zhuǎn)體體積物體沿直線運動時變力所作的功2、規(guī)定(1)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件。(2)掌握定積分的基本性質(zhì)。(3)理解變上限積分是變上限的函數(shù),掌握對變上限定積分求導數(shù)的方法。(4)純熟掌握牛頓—萊布尼茨公式。(5)掌握定積分的換元積分法與分部積分法。(6)理解無窮區(qū)間的廣義積分的概念,掌握其計算方法。(7)掌握直角坐標系下用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體體積。會用定積分求沿直線運動時變力所作的功。四、向量代數(shù)與空間解析幾何(一)向量代數(shù)1、知識范圍(1)向量的概念向量的定義向量的模單位向量向量在坐標軸上的投影向量的坐標表達法向量的方向余弦(2)向量的線性運算向量的加法向量的減法向量的數(shù)乘(3)向量的數(shù)量積二向量的夾角二向量垂直的充足必要條件(4)二向量的向量積二向量平行的充足必要條件2、規(guī)定(1)理解向量的概念,掌握向量的坐標表達法,會求單位向量、方向余弦、向量在坐標軸上的投影。(2)純熟掌握向量的線性運算、向量的數(shù)量積與向量積的計算方法。(3)純熟掌握二向量平行、垂直的充足必要條件。(二)平面與直線1、知識范圍(1)常見的平面方程點法式方程一般式方程(2)兩平面的位置關(guān)系(平行、垂直和斜交)(3)點到平面的距離(4)空間直線方程標準式方程(又稱對稱式方程或點向式方程)一般式方程參數(shù)式方程(5)兩直線的位置關(guān)系(平行、垂直)(6)直線與平面的位置關(guān)系(平行、垂直和直線在平面上)2、規(guī)定(1)會求平面的點法式方程、一般式方程。會鑒定兩平面的垂直、平行。會求兩平面間的夾角。(2)會求點到平面的距離。(3)了解直線的一般式方程,會求直線的標準式方程、參數(shù)式方程。會鑒定兩直線平行、垂直。(4)會鑒定直線與平面間的關(guān)系(垂直、平行、直線在平面上)。(三)簡樸的二次曲面1、知識范圍球面母線平行于坐標軸的柱面旋轉(zhuǎn)拋物面圓錐面橢球面2、規(guī)定了解球面、母線平行于坐標軸的柱面、旋轉(zhuǎn)拋物面、圓錐面和橢球面的方程及其圖形。五、多元函數(shù)微積分學(一)多元函數(shù)微分學1、知識范圍(1)多元函數(shù)多元函數(shù)的定義二元函數(shù)的幾何意義二元函數(shù)極限與連續(xù)的概念(2)偏導數(shù)與全微分偏導數(shù)全微分二階偏導數(shù)(3)復合函數(shù)的偏導數(shù)(4)隱函數(shù)的偏導數(shù)(5)二元函數(shù)的無條件極值與條件極值2、規(guī)定(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會求二次函數(shù)的表達式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對計算不作規(guī)定)。(2)理解偏導數(shù)概念,了解偏導數(shù)的幾何
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京航空航天大學《多軸系統(tǒng)動力學與控制》2021-2022學年期末試卷
- 南京工業(yè)大學浦江學院《稅法》2023-2024學年第一學期期末試卷
- 方帽子店說課稿
- 《夜書所見》說課稿
- 南京工業(yè)大學浦江學院《操作系統(tǒng)》2021-2022學年期末試卷
- 簡單的木材合同(2篇)
- 南京工業(yè)大學《移動通信與5G技術(shù)》2022-2023學年第一學期期末試卷
- 南京工業(yè)大學《土木工程圖學及BIM》2023-2024學年第一學期期末試卷
- 新型病蟲害防治技術(shù)的實施方案
- 實驗探究加速度與力質(zhì)量的關(guān)系教案
- 初中《學憲法講憲法》第八個國家憲法日主題教育課件
- 2024醫(yī)療機構(gòu)重大事故隱患判定清單(試行)學習課件
- 《抗心律失常藥物臨床應用中國專家共識2023》解讀
- 四年級家長會(完美版)
- 第一次工地會議內(nèi)容與議程
- (2021更新)國家開放大學電大《課程與教學論》形考任務4試題及答案
- 單門門禁一體機操作流程
- 腸套疊實用教案
- 勝利油田鉆完井液技術(shù)現(xiàn)狀及發(fā)展趨勢鉆井院
- 靜設(shè)備安裝工程質(zhì)量驗收要求
- 單人臨柜操作流程
評論
0/150
提交評論