版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
學必求其心得,業(yè)必貴于專精學必求其心得,業(yè)必貴于專精學必求其心得,業(yè)必貴于專精1.2.2基本初等函數(shù)的導數(shù)公式及導數(shù)的運算法則(二)[學習目標]1.理解函數(shù)的和、差、積、商的求導法則.2.理解求導法則的證明過程,能夠綜合運用導數(shù)公式和導數(shù)運算法則求函數(shù)的導數(shù).3.能運用復合函數(shù)的求導法則進行復合函數(shù)的求導.[知識鏈接]前面我們已經(jīng)學習了幾個常用函數(shù)的導數(shù)和基本初等函數(shù)的導數(shù)公式,這樣做起題來比用導數(shù)的定義顯得格外輕松.我們已經(jīng)會求f(x)=5和g(x)=1。05x等基本初等函數(shù)的導數(shù),那么怎樣求f(x)與g(x)的和、差、積、商的導數(shù)呢?答利用導數(shù)的運算法則.[預習導引]1.導數(shù)運算法則法則語言敘述[f(x)±g(x)]′=f′(x)±g′(x)兩個函數(shù)的和(或差)的導數(shù),等于這兩個函數(shù)的導數(shù)的和(或差)[f(x)·g(x)]′=f′(x)·g(x)+f(x)·g′(x)兩個函數(shù)的積的導數(shù),等于第一個函數(shù)的導數(shù)乘上第二個函數(shù),加上第一個函數(shù)乘上第二個函數(shù)的導數(shù)eq\b\lc\[\rc\](\a\vs4\al\co1(\f(fx,gx)))′=eq\f(f′xgx-fx·g′x,[gx]2)(g(x)≠0)兩個函數(shù)的商的導數(shù),等于分子的導數(shù)乘上分母減去分子乘上分母的導數(shù),再除以分母的平方2.復合函數(shù)的求導法則復合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復合函數(shù),記作y=f(g(x))復合函數(shù)的求導法則復合函數(shù)y=f(g(x))的導數(shù)和函數(shù)y=f(u),u=g(x)的導數(shù)間的關系為yx′=y(tǒng)u′·ux′,即y對x的導數(shù)等于y對u的導數(shù)與u對x的導數(shù)的乘積要點一利用導數(shù)的運算法則求函數(shù)的導數(shù)例1求下列函數(shù)的導數(shù):(1)y=x3-2x+3;(2)y=(x2+1)(x-1);(3)y=3x-lgx。解(1)y′=(x3)′-(2x)′+3′=3x2-2。(2)∵y=(x2+1)(x-1)=x3-x2+x-1,∴y′=(x3)′-(x2)′+x′-1′=3x2-2x+1.(3)函數(shù)y=3x-lgx是函數(shù)f(x)=3x與函數(shù)g(x)=lgx的差.由導數(shù)公式表分別得出f′(x)=3xln3,g′(x)=eq\f(1,xln10),利用函數(shù)差的求導法則可得(3x-lgx)′=f′(x)-g′(x)=3xln3-eq\f(1,xln10).規(guī)律方法本題是基本函數(shù)和(差)的求導問題,求導過程要緊扣求導法則,聯(lián)系基本函數(shù)求導法則,對于不具備求導法則結(jié)構(gòu)形式的可先進行適當?shù)暮愕茸冃无D(zhuǎn)化為較易求導的結(jié)構(gòu)形式再求導數(shù).跟蹤演練1求下列函數(shù)的導數(shù):(1)y=5-4x3;(2)y=3x2+xcosx;(3)y=ex·lnx;(4)y=lgx-eq\f(1,x2).解(1)y′=-12x2;(2)y′=(3x2+xcosx)′=6x+cosx-xsinx;(3)y′=eq\f(ex,x)+ex·lnx;(4)y′=eq\f(1,xln10)+eq\f(2,x3)。要點二求復合函數(shù)的導數(shù)例2求下列函數(shù)的導數(shù):(1)y=ln(x+2);(2)y=(1+sinx)2;解(1)y=lnu,u=x+2∴y′x=y(tǒng)′u·u′x=(lnu)′·(x+2)′=eq\f(1,u)·1=eq\f(1,x+2)。(2)y=u2,u=1+sinx,∴yx′=y(tǒng)u′·ux′=(u2)′·(1+sinx)′=2u·cosx=2cosx(1+sinx).規(guī)律方法應用復合函數(shù)的求導法則求導,應注意以下幾個方面:(1)中間變量的選取應是基本函數(shù)結(jié)構(gòu).(2)正確分析函數(shù)的復合層次,并要弄清每一步是哪個變量對哪個變量的求導.(3)一般是從最外層開始,由外及里,一層層地求導.(4)善于把一部分表達式作為一個整體.(5)最后要把中間變量換成自變量的函數(shù).熟練后,就不必再寫中間步驟.跟蹤演練2(1)y=e2x+1;(2)y=(eq\r(x)-2)2.解(1)y=eu,u=2x+1,∴y′x=y(tǒng)′u·u′x=(eu)′·(2x+1)′=2eu=2e2x+1.(2)法一∵y=(eq\r(x)-2)2=x-4eq\r(x)+4,∴y′=x′-(4eq\r(x))′+4′=1-4×eq\f(1,2)x-eq\f(1,2)=1-eq\f(2,\r(x)).法二令u=eq\r(x)-2,則yx′=y(tǒng)u′·ux′=2(eq\r(x)-2)·(eq\r(x)-2)′=2(eq\r(x)-2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)·\f(1,\r(x))-0))=1-eq\f(2,\r(x))。要點三導數(shù)的應用例3求過點(1,-1)與曲線f(x)=x3-2x相切的直線方程.解設P(x0,y0)為切點,則切線斜率為k=f′(x0)=3xeq\o\al(2,0)-2故切線方程為y-y0=(3xeq\o\al(2,0)-2)(x-x0) ①∵(x0,y0)在曲線上,∴y0=xeq\o\al(3,0)-2x0 ②又∵(1,-1)在切線上,∴將②式和(1,-1)代入①式得-1-(xeq\o\al(3,0)-2x0)=(3xeq\o\al(2,0)-2)(1-x0).解得x0=1或x0=-eq\f(1,2).故所求的切線方程為y+1=x-1或y+1=-eq\f(5,4)(x-1).即x-y-2=0或5x+4y-1=0.規(guī)律方法(1,-1)雖然在曲線上,但是經(jīng)過該點的切線不一定只有一條,即該點有可能是切點,也可能是切線與曲線的交點,解題時注意不要失解.跟蹤演練3已知某運動著的物體的運動方程為s(t)=eq\f(t-1,t2)+2t2(位移單位:m,時間單位:s),求t=3s時物體的瞬時速度.解∵s(t)=eq\f(t-1,t2)+2t2=eq\f(t,t2)-eq\f(1,t2)+2t2=eq\f(1,t)-eq\f(1,t2)+2t2,∴s′(t)=-eq\f(1,t2)+2·eq\f(1,t3)+4t,∴s′(3)=-eq\f(1,9)+eq\f(2,27)+12=eq\f(323,27),即物體在t=3s時的瞬時速度為eq\f(323,27)m/s.1.下列結(jié)論不正確的是()A.若y=3,則y′=0B.若f(x)=3x+1,則f′(1)=3C.若y=-eq\r(x)+x,則y′=-eq\f(1,2\r(x))+1D.若y=sinx+cosx,則y′=cosx+sinx答案D解析利用求導公式和導數(shù)的加、減運算法則求解.D項,∵y=sinx+cosx,∴y′=(sinx)′+(cosx)′=cosx-sinx.2.函數(shù)y=eq\f(cosx,1-x)的導數(shù)是()A。eq\f(-sinx+xsinx,1-x2) B.eq\f(xsinx-sinx-cosx,1-x2)C.eq\f(cosx-sinx+xsinx,1-x2) D.eq\f(cosx-sinx+xsinx,1-x)答案C解析y′=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(cosx,1-x)))′=eq\f(-sinx1-x-cosx·-1,1-x2)=eq\f(cosx-sinx+xsinx,1-x2).3.曲線y=eq\f(x,x+2)在點(-1,-1)處的切線方程為()A.y=2x+1 B.y=2x-1C.y=-2x-3 D.y=-2x+2答案A解析∵y′=eq\f(x′x+2-xx+2′,x+22)=eq\f(2,x+22),∴k=y(tǒng)′|x=-1=eq\f(2,-1+22)=2,∴切線方程為y+1=2(x+1),即y=2x+1.4.直線y=eq\f(1,2)x+b是曲線y=lnx(x>0)的一條切線,則實數(shù)b=________.答案ln2-1解析設切點為(x0,y0),∵y′=eq\f(1,x),∴eq\f(1,2)=eq\f(1,x0),∴x0=2,∴y0=ln2,ln2=eq\f(1,2)×2+b,∴b=ln2-1.求函數(shù)的導數(shù)要準確把函數(shù)分割為基本函數(shù)的和、差、積、商,再利用運算法則求導數(shù).在求導過程中,要仔細分析出函數(shù)解析式的結(jié)構(gòu)特征,根據(jù)導數(shù)運算法則,聯(lián)系基本函數(shù)的導數(shù)公式.對于不具備導數(shù)運算法則結(jié)構(gòu)形式的要進行適當恒等變形,轉(zhuǎn)化為較易求導的結(jié)構(gòu)形式,再求導數(shù),進而解決一些切線斜率、瞬時速度等問題。一、基礎達標1.設y=-2exsinx,則y′等于()A.-2excosx B.-2exsinxC.2exsinx D.-2ex(sinx+cosx)答案D解析y′=-2(exsinx+excosx)=-2ex(sinx+cosx).2.當函數(shù)y=eq\f(x2+a2,x)(a〉0)在x=x0處的導數(shù)為0時,那么x0=()A.a(chǎn) B.±aC.-a D.a(chǎn)2答案B解析y′=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x2+a2,x)))′=eq\f(2x·x-x2+a2,x2)=eq\f(x2-a2,x2),由xeq\o\al(2,0)-a2=0得x0=±a。3.設曲線y=eq\f(x+1,x-1)在點(3,2)處的切線與直線ax+y+1=0垂直,則a等于()A.2 B.eq\f(1,2)C.-eq\f(1,2) D.-2答案D解析∵y=eq\f(x+1,x-1)=1+eq\f(2,x-1),∴y′=-eq\f(2,x-12)。∴y′|x=3=-eq\f(1,2)?!啵璦=2,即a=-2。4.已知曲線y=x3在點P處的切線斜率為k,則當k=3時的P點坐標為()A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2),-\f(1,8)))答案B解析y′=3x2,∵k=3,∴3x2=3,∴x=±1,則P點坐標為(-1,-1)或(1,1).5.設函數(shù)f(x)=g(x)+x2,曲線y=g(x)在點(1,g(1))處的切線方程為y=2x+1,則曲線y=f(x)在點(1,f(1))處切線的斜率為________.答案4解析依題意得f′(x)=g′(x)+2x,f′(1)=g′(1)+2=4。6.已知f(x)=eq\f(1,3)x3+3xf′(0),則f′(1)=________.答案1解析由于f′(0)是一常數(shù),所以f′(x)=x2+3f令x=0,則f′(0)=0,∴f′(1)=12+3f7.求下列函數(shù)的導數(shù):(1)y=(2x2+3)(3x-1);(2)y=x-sineq\f(x,2)coseq\f(x,2).解(1)法一y′=(2x2+3)′(3x-1)+(2x2+3)(3x-1)′=4x(3x-1)+3(2x2+3)=18x2-4x+9.法二∵y=(2x2+3)(3x-1)=6x3-2x2+9x-3,∴y′=(6x3-2x2+9x-3)′=18x2-4x+9。(2)∵y=x-sineq\f(x,2)coseq\f(x,2)=x-eq\f(1,2)sinx,∴y′=x′-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)sinx))′=1-eq\f(1,2)cosx.二、能力提升8.曲線y=eq\f(sinx,sinx+cosx)-eq\f(1,2)在點Meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4),0))處的切線的斜率為()A.-eq\f(1,2) B.eq\f(1,2)C.-eq\f(\r(2),2) D.eq\f(\r(2),2)答案B解析y′=eq\f(cosxsinx+cosx-sinxcosx-sinx,sinx+cosx2)=eq\f(1,sinx+cosx2),故y′|eq\b\lc\\rc\(\a\vs4\al\co1(x=\f(π,4)))=eq\f(1,2),∴曲線在點Meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4),0))處的切線的斜率為eq\f(1,2).9.已知點P在曲線y=eq\f(4,ex+1)上,α為曲線在點P處的切線的傾斜角,則α的取值范圍是()A.[0,eq\f(π,4)) B.[eq\f(π,4),eq\f(π,2))C.(eq\f(π,2),eq\f(3π,4)] D.[eq\f(3π,4),π)答案D解析y′=-eq\f(4ex,ex+12)=-eq\f(4ex,e2x+2ex+1),設t=ex∈(0,+∞),則y′=-eq\f(4t,t2+2t+1)=-eq\f(4,t+\f(1,t)+2),∵t+eq\f(1,t)≥2,∴y′∈[-1,0),α∈[eq\f(3π,4),π).10.(2013·江西)設函數(shù)f(x)在(0,+∞)內(nèi)可導,且f(ex)=x+ex,則f′(1)=________.答案2解析令t=ex,則x=lnt,所以函數(shù)為f(t)=lnt+t,即f(x)=lnx+x,所以f′(x)=eq\f(1,x)+1,即f′(1)=eq\f(1,1)+1=2。11.求過點(2,0)且與曲線y=x3相切的直線方程.解點(2,0)不在曲線y=x3上,可令切點坐標為(x0,xeq\o\al(3,0)).由題意,所求直線方程的斜率k=eq\f(x\o\al(3,0)-0,x0-2)=y(tǒng)′|x=x0=3xeq\o\al(2,0),即eq\f(x\o\al(3,0),x0-2)=3xeq\o\al(2,0),解得x0=0或x0=3.當x0=0時,得切點坐標是(0,0),斜率k=0,則所求直線方程是y=0;當x0=3時,得切點坐標是(3,27),斜率k=27,則所求直線方程是y-27=27(x-3),即27x-y-54=0.綜上,所求的直線方程為y=0或27x-y-54=0。12.已知曲線f(x)=x3-3x,過點A(0,16)作曲線f(x)的切線,求曲線的切線方程.解設切點為(x0,y0),則由導數(shù)定義得切線的斜率k=f′(x0)=3xeq\o\al(2,0)-3,∴切線方程為y=(3xeq\o\al(2,0)-3)x+16,又切點(x0,y0)在切線上,∴y0=3(xeq\o\al(2,0)-1)x0+16,即xeq\o\al(3,0)-3x0=3(xeq\o\al(2,0)-1)x0+16,解得x0=-2,∴切線方程為9x-y+16=0.三、探究與創(chuàng)新13.設函數(shù)f(x)=ax-eq\f(b,x),曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0。(1)求f(x)的解析式;(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形的面積為定值,并求此定值.(1)解由7x-4y-12=0得y=eq\f(7,4)x-3.當x=2時,y=eq\f(1,2),∴f(2)=eq\f(1,2), ①又f′(x)=a+eq\f(b,x2),∴f′(2)=eq\f(7,4), ②由①,②得eq\b\lc\{\rc\(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 乙胺嘧啶中毒的臨床護理
- 《數(shù)據(jù)分析與統(tǒng)計軟》課件
- 孕期暈倒的健康宣教
- 《光學測量技術》課件-第6章
- 疤痕體質(zhì)的臨床護理
- 孕期碘缺乏病的健康宣教
- 2024年河南省中職對口升學高考語文試題真題(解析版)
- 乳牙早失的健康宣教
- 前庭大腺囊腫的健康宣教
- 《信用監(jiān)管》課件
- 應用統(tǒng)計學實驗指導書
- 地下停車場車位物業(yè)服務協(xié)議
- 物流學概論(第五版)第10章-區(qū)域物流教材課件
- 《幼兒衛(wèi)生保健基礎》第五章 特殊幼兒衛(wèi)生保健
- 最新國家開放大學-《財務管理》-機考復習資料-附答案
- 畢業(yè)設計(論文)-NJM-G4內(nèi)曲線徑向柱塞式液壓馬達的優(yōu)化設計
- 產(chǎn)科品管圈降低產(chǎn)后乳房脹痛發(fā)生率
- 《物理因子療法》考試復習題庫(帶答案)
- 2023屆高考作文模擬寫作-“引體向上”與“低姿匍匐”課件
- 國家社科基金項目申報:經(jīng)驗與體會課件
- 《醫(yī)學影像成像原理》考試復習題庫(匯總版)
評論
0/150
提交評論