2023屆蒙古北京八中烏蘭察布分校高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第1頁
2023屆蒙古北京八中烏蘭察布分校高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第2頁
2023屆蒙古北京八中烏蘭察布分校高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第3頁
2023屆蒙古北京八中烏蘭察布分校高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第4頁
2023屆蒙古北京八中烏蘭察布分校高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時,,則,,的大小關(guān)系為()A. B. C. D.2.在區(qū)間上隨機(jī)取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.113.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.4.一個算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.5.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對應(yīng)的點(diǎn)到原點(diǎn)的距離為()A. B. C. D.6.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.57.已知曲線,動點(diǎn)在直線上,過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,則直線截圓所得弦長為()A. B.2 C.4 D.8.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.9.已知,,是平面內(nèi)三個單位向量,若,則的最小值()A. B. C. D.510.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬元)的統(tǒng)計數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費(fèi)用超過15萬元將該設(shè)備報廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年11.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.12.《算數(shù)書》竹簡于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從分別寫有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為__________.14.若的展開式中所有項的系數(shù)之和為,則______,含項的系數(shù)是______(用數(shù)字作答).15.設(shè)Sn為數(shù)列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.16.在等比數(shù)列中,,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,且.(1)求的最小值;(2)證明:.18.(12分)已知橢圓C:(a>b>0)的兩個焦點(diǎn)分別為F1(-,0)、F2(,0).點(diǎn)M(1,0)與橢圓短軸的兩個端點(diǎn)的連線相互垂直.(1)求橢圓C的方程;(2)已知點(diǎn)N的坐標(biāo)為(3,2),點(diǎn)P的坐標(biāo)為(m,n)(m≠3).過點(diǎn)M任作直線l與橢圓C相交于A、B兩點(diǎn),設(shè)直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關(guān)系式.19.(12分)某工廠,兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元.若從兩條生產(chǎn)線上各隨機(jī)抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機(jī)抽取件進(jìn)行檢測,結(jié)果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.20.(12分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.21.(12分)在直角坐標(biāo)系中,圓C的參數(shù)方程(為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓C的極坐標(biāo)方程;(2)直線l的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段的長.22.(10分)購買一輛某品牌新能源汽車,在行駛?cè)旰?,政府將給予適當(dāng)金額的購車補(bǔ)貼.某調(diào)研機(jī)構(gòu)對擬購買該品牌汽車的消費(fèi)者,就購車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了抽樣調(diào)查,其樣本頻率分布直方圖如圖所示.(1)估計擬購買該品牌汽車的消費(fèi)群體對購車補(bǔ)貼金額的心理預(yù)期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費(fèi)群體中隨機(jī)抽取人,記對購車補(bǔ)貼金額的心理預(yù)期值高于萬元的人數(shù)為,求的分布列和數(shù)學(xué)期望;(3)統(tǒng)計最近個月該品牌汽車的市場銷售量,得其頻數(shù)分布表如下:月份銷售量(萬輛)試預(yù)計該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項.【詳解】依題意得,,當(dāng)時,,因?yàn)?,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.2、D【解析】

由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點(diǎn)有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎(chǔ)題目.3、C【解析】

先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.4、D【解析】

首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項.【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.【點(diǎn)睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計算,直到達(dá)到輸出條件即可.5、B【解析】

利用復(fù)數(shù)的除法運(yùn)算化簡z,復(fù)數(shù)在復(fù)平面中對應(yīng)的點(diǎn)到原點(diǎn)的距離為利用模長公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對應(yīng)的點(diǎn)到原點(diǎn)的距離為故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算,模長公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.6、C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模7、C【解析】

設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點(diǎn)坐標(biāo)代入切線方程,抽象出直線方程,且過定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點(diǎn),所以,即都在直線上,所以直線的方程為,恒過定點(diǎn),即直線過圓心,則直線截圓所得弦長為4.故選:C.【點(diǎn)睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點(diǎn)所在直線求解是解題的關(guān)鍵,屬于中檔題.8、B【解析】

由圖利用三角形的面積公式可得正八邊形中每個三角形的面積,再計算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點(diǎn)睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.9、A【解析】

由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號可取到.故選:A【點(diǎn)睛】此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題.10、D【解析】

根據(jù)樣本中心點(diǎn)在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費(fèi)用超過15萬元.故選:D.【點(diǎn)睛】本題考查回歸直線過樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.11、B【解析】

依照偶函數(shù)的定義,對定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對稱,定義域區(qū)間兩個端點(diǎn)互為相反數(shù).12、C【解析】

將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點(diǎn)睛】本題利用古代數(shù)學(xué)問題考查圓錐體積計算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點(diǎn)睛】本題考查古典概型概率的求法,考查運(yùn)算求解能力,求解時注意辨別概率的模型.14、【解析】的展開式中所有項的系數(shù)之和為,,,項的系數(shù)是,故答案為(1),(2).15、55【解析】

由求出.由,可得,兩式相減,可得數(shù)列是以1為首項,1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時,,當(dāng)時,由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項,1為公差的等差數(shù)列,.故答案為:55.【點(diǎn)睛】本題考查求數(shù)列的前項和,屬于基礎(chǔ)題.16、1【解析】

設(shè)等比數(shù)列的公比為,再根據(jù)題意用基本量法求解公比,進(jìn)而利用等比數(shù)列項之間的關(guān)系得即可.【詳解】設(shè)等比數(shù)列的公比為.由,得,解得.又由,得.則.故答案為:1【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)利用基本不等式即可求得最小值;(2)關(guān)鍵是配湊系數(shù),進(jìn)而利用基本不等式得證.【詳解】(1),當(dāng)且僅當(dāng)“”時取等號,故的最小值為;(2),當(dāng)且僅當(dāng)時取等號,此時.故.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用,屬于基礎(chǔ)題.18、(1);(2)m-n-1=0【解析】試題分析:(1)利用M與短軸端點(diǎn)構(gòu)成等腰直角三角形,可求得b的值,進(jìn)而得到橢圓方程;(2)設(shè)出過M的直線l的方程,將l與橢圓C聯(lián)立,得到兩交點(diǎn)坐標(biāo)關(guān)系,然后將k1+k3表示為直線l斜率的關(guān)系式,化簡后得k1+k3=2,于是可得m,n的關(guān)系式.試題解析:(1)由題意,c=,b=1,所以a=故橢圓C的方程為(2)①當(dāng)直線l的斜率不存在時,方程為x=1,代入橢圓得,y=±不妨設(shè)A(1,),B(1,-)因?yàn)閗1+k3==2又k1+k3=2k2,所以k2=1所以m,n的關(guān)系式為=1,即m-n-1=0②當(dāng)直線l的斜率存在時,設(shè)l的方程為y=k(x-1)將y=k(x-1)代入,整理得:(3k2+1)x2-6k2x+3k2-3=0設(shè)A(x1,y1),B(x2,y2),則又y1=k(x1-1),y2=k(x2-1)所以k1+k3======2所以2k2=2,所以k2==1所以m,n的關(guān)系式為m-n-1=0綜上所述,m,n的關(guān)系式為m-n-1=0.考點(diǎn):橢圓標(biāo)準(zhǔn)方程,直線與橢圓位置關(guān)系,19、(1)(2)①生產(chǎn)線上挽回的損失較多.②見解析【解析】

(1)由題意得到關(guān)于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項分布的期望公式和數(shù)學(xué)期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應(yīng)的概率值可得分布列,最后由分布列可得利潤的期望值.【詳解】(1)設(shè)從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設(shè)從,生產(chǎn)線上抽到合格品分別為事件,,則,互為獨(dú)立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線的合格率分別為和,即不合格率分別為和.①設(shè)從,生產(chǎn)線上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,則有,,所以,生產(chǎn)線上挽回?fù)p失的平均數(shù)分別為:,所以生產(chǎn)線上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計總體,則有,,所以的分布列為所以(元)故估算估算該廠產(chǎn)量件時利潤的期望值為(元)【點(diǎn)睛】本題主要考查概率公式的應(yīng)用,二項分布的性質(zhì)與方差的求解,離散型隨機(jī)變量及其分布列的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、(Ⅰ)(Ⅱ)見證明【解析】

(Ⅰ)求導(dǎo)得,由是減函數(shù)得,對任意的,都有恒成立,構(gòu)造函數(shù),通過求導(dǎo)判斷它的單調(diào)性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數(shù),且可得,當(dāng)時,,則,即,兩邊同除以得,,即,從而,兩邊取對數(shù),然后再證明恒成立即可,構(gòu)造函數(shù),,通過求導(dǎo)證明即可.【詳解】解:(Ⅰ)的定義域?yàn)椋?由是減函數(shù)得,對任意的,都有恒成立.設(shè).∵,由知,∴當(dāng)時,;當(dāng)時,,∴在上單調(diào)遞增,在上單調(diào)遞減,∴在時取得最大值.又∵,∴對任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數(shù),且可得,當(dāng)時,,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調(diào)遞增,∴在上單調(diào)遞減,而,∴當(dāng)時,恒成立,∴在上單調(diào)遞

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論