畢業(yè)設(shè)計說明泰安市某集團(tuán)辦公樓說明_第1頁
畢業(yè)設(shè)計說明泰安市某集團(tuán)辦公樓說明_第2頁
畢業(yè)設(shè)計說明泰安市某集團(tuán)辦公樓說明_第3頁
畢業(yè)設(shè)計說明泰安市某集團(tuán)辦公樓說明_第4頁
畢業(yè)設(shè)計說明泰安市某集團(tuán)辦公樓說明_第5頁
已閱讀5頁,還剩111頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

目錄前言----------------------------------1內(nèi)容摘要------------------------------2設(shè)計總說明----------------------------13建筑設(shè)計說明------------------------------13結(jié)構(gòu)設(shè)計說明------------------------------15設(shè)計計算書--------------------------------工程總體概述---------------------------------結(jié)構(gòu)平面布置圖-------------------------------------荷載統(tǒng)計------------------------------------------框架結(jié)構(gòu)內(nèi)力計算---------------------------------內(nèi)力組合---------------------------------------截面設(shè)計及配筋設(shè)計-----------------------------板的設(shè)計-------------------------------------基礎(chǔ)設(shè)計-------------------------------------樓梯設(shè)計-------------------------------------參考文獻(xiàn)-------------------------------------致謝辭---------------------------------------一.前言畢業(yè)設(shè)計是大學(xué)本科教育培養(yǎng)目標(biāo)實現(xiàn)的重要階段,是畢業(yè)前的綜合學(xué)習(xí)階段,是深化、拓寬、綜合教和學(xué)的重要過程,是對大學(xué)期間所學(xué)專業(yè)知識的全面總結(jié)。本組畢業(yè)設(shè)計題目為《**市某集團(tuán)辦公樓框架結(jié)構(gòu)設(shè)計》。在畢設(shè)前期,我溫習(xí)了《結(jié)構(gòu)力學(xué)》、《鋼筋混凝土》、《建筑結(jié)構(gòu)抗震設(shè)計》等知識,并借閱了《抗震規(guī)范》、《混凝土規(guī)范》、《荷載規(guī)范》等規(guī)范。在畢設(shè)中期,我們通過所學(xué)的基本理論、專業(yè)知識和基本技能進(jìn)行建筑、結(jié)構(gòu)設(shè)計,本組在校成員齊心協(xié)力、分工合作,發(fā)揮了大家的團(tuán)隊精神。在畢設(shè)后期,主要進(jìn)行設(shè)計手稿的整理,并用電腦繪圖并得到老師的審批和指正,使我圓滿的完成了任務(wù),在此表示衷心的感謝。畢業(yè)設(shè)計的三個月里,在指導(dǎo)老師的幫助下,經(jīng)過資料查閱、設(shè)計計算、論文撰寫以及外文的翻譯,加深了對新規(guī)范、規(guī)程、手冊等相關(guān)內(nèi)容的理解。鞏固了專業(yè)知識、提高了綜合分析、解決問題的能力。在繪圖時熟練掌握了AutoCAD,天正,及PKPM以上所有這些從不同方面達(dá)到了畢業(yè)設(shè)計的目的與要求??蚣芙Y(jié)構(gòu)設(shè)計的計算工作量很大,在計算過程中以手算為主,輔以一些計算軟件的校正。由于自己水平有限,難免有不妥和疏忽之處,敬請各位老師批評指正。二零零七年六月十日二內(nèi)容摘要本設(shè)計主要進(jìn)行了結(jié)構(gòu)方案中橫向框架2軸框架的抗震設(shè)計。在確定框架布局之后,先進(jìn)行了層間荷載代表值的計算,接著利用頂點位移法求出自震周期,進(jìn)而按底部剪力法計算水平地震荷載作用下大小,進(jìn)而求出在水平荷載作用下的結(jié)構(gòu)內(nèi)力(彎矩、剪力、軸力)。接著計算豎向荷載(恒載及活荷載)作用下的結(jié)構(gòu)內(nèi)力,。是找出最不利的一組或幾組內(nèi)力組合。選取最安全的結(jié)果計算配筋并繪圖。此外還進(jìn)行了結(jié)構(gòu)方案中的室內(nèi)樓梯的設(shè)計。完成了平臺板,梯段板,平臺梁等構(gòu)件的內(nèi)力和配筋計算及施工圖繪制。關(guān)鍵詞:框架結(jié)構(gòu)設(shè)計抗震設(shè)計AbstractThepurposeofthedesignistodotheanti-seismicdesigninthelongitudinalframesofaxis2.Whenthedirectionsoftheframesisdetermined,firstlytheweightofeachflooriscalculated.Thenthevibratecycleiscalculatedbyutilizingthepeak-displacementmethod,thenmakingtheamountofthehorizontalseismicforcecanbegotbywayofthebottom-shearforcemethod.Theseismicforcecanbeassignedaccordingtotheshearingstiffnessoftheframesofthedifferentaxis.Thentheinternalforce(bendingmoment,shearingforceandaxialforce)inthestructureunderthehorizontalloadscanbeeasilycalculated.Afterthedeterminationoftheinternalforceunderthedeadandliveloads,thecombinationofinternalforcecanbemadebyusingtheExcelsoftware,whosepurposeistofindoneorseveralsetsofthemostadverseinternalforceofthewalllimbsandthecoterminousgirders,whichwillbethebasisofprotractingthereinforcingdrawingsofthecomponents.Thedesignofthestairsisalsobeapproachedbycalculatingtheinternalforceandreinforcingsuchcomponentsaslandingslab,stepboardandlandinggirderwhoseshopdrawingsarecompletedintheend.致謝:首先衷心的感謝我的導(dǎo)師石老師,在她的指導(dǎo)和幫助下,我得以順利完成畢業(yè)設(shè)計的任務(wù),雖然我本身的專業(yè)能力有限,但我想挑戰(zhàn)一下自己,選擇設(shè)計辦公樓,從建筑設(shè)計到結(jié)構(gòu)設(shè)計,每進(jìn)一步都得到了老師的支持與鼓勵。設(shè)計中遇到了太多的困難,在石老師的指導(dǎo)下得以克服并解決。由于設(shè)計工程量大,時間緊,任務(wù)重,不免有疏忽和差錯和不足的地方,懇請領(lǐng)導(dǎo)提出寶貴意見,在此不勝感激??萍假Y料翻譯一、科技資料原文:StructuralSystemstoresistlateralloadsCommonlyUsedstructuralSystemsWithloadsmeasuredintensofthousandskips,thereislittleroominthedesignofhigh-risebuildingsforexcessivelycomplexthoughts.Indeed,thebetterhigh-risebuildingscarrytheuniversaltraitsofsimplicityofthoughtandclarityofexpression.Itdoesnotfollowthatthereisnoroomforgrandthoughts.Indeed,itiswithsuchgrandthoughtsthatthenewfamilyofhigh-risebuildingshasevolved.Perhapsmoreimportant,thenewconceptsofbutafewyearsagohavebecomecommonplaceintoday’stechnology.Omittingsomeconceptsthatarerelatedstrictlytothematerialsofconstruction,themostcommonlyusedstructuralsystemsusedinhigh-risebuildingscanbecategorizedasfollows:Moment-resistingframes.Bracedframes,includingeccentricallybracedframes.Shearwalls,includingsteelplateshearwalls.Tube-in-tubestructures.Tube-in-tubestructures.Core-interactivestructures.Cellularorbundled-tubesystems.Particularlywiththerecenttrendtowardmorecomplexforms,butinresponsealsototheneedforincreasedstiffnesstoresisttheforcesfromwindandearthquake,mosthigh-risebuildingshavestructuralsystemsbuiltupofcombinationsofframes,bracedbents,shearwalls,andrelatedsystems.Further,forthetallerbuildings,themajoritiesarecomposedofinteractiveelementsinthree-dimensionalarrays.Themethodofcombiningtheseelementsistheveryessenceofthedesignprocessforhigh-risebuildings.Thesecombinationsneedevolveinresponsetoenvironmental,functional,andcostconsiderationssoastoprovideefficientstructuresthatprovokethearchitecturaldevelopmenttonewheights.Thisisnottosaythatimaginativestructuraldesigncancreategreatarchitecture.Tothecontrary,manyexamplesoffinearchitecturehavebeencreatedwithonlymoderatesupportfromthestructuralengineer,whileonlyfinestructure,notgreatarchitecture,canbedevelopedwithoutthegeniusandtheleadershipofatalentedarchitect.Inanyevent,thebestofbothisneededtoformulateatrulyextraordinarydesignofahigh-risebuilding.Whilecomprehensivediscussionsofthesesevensystemsaregenerallyavailableintheliterature,furtherdiscussioniswarrantedhere.Theessenceofthedesignprocessisdistributedthroughoutthediscussion.Moment-ResistingFramesPerhapsthemostcommonlyusedsysteminlow-tomedium-risebuildings,themoment-resistingframe,ischaracterizedbylinearhorizontalandverticalmembersconnectedessentiallyrigidlyattheirjoints.Suchframesareusedasastand-alonesystemorincombinationwithothersystemssoastoprovidetheneededresistancetohorizontalloads.Inthetallerofhigh-risebuildings,thesystemislikelytobefoundinappropriateforastand-alonesystem,thisbecauseofthedifficultyinmobilizingsufficientstiffnessunderlateralforces.AnalysiscanbeaccomplishedbySTRESS,STRUDL,orahostofotherappropriatecomputerprograms;analysisbytheso-calledportalmethodofthecantilevermethodhasnoplaceintoday’stechnology.Becauseoftheintrinsicflexibilityofthecolumn/girderintersection,andbecausepreliminarydesignsshouldaimtohighlightweaknessesofsystems,itisnotunusualtousecenter-to-centerdimensionsfortheframeinthepreliminaryanalysis.Ofcourse,inthelatterphasesofdesign,arealisticappraisalin-jointdeformationisessential.BracedFramesThebracedframe,intrinsicallystifferthanthemoment–resistingframe,findsalsogreaterapplicationtohigher-risebuildings.Thesystemischaracterizedbylinearhorizontal,vertical,anddiagonalmembers,connectedsimplyorrigidlyattheirjoints.Itisusedcommonlyinconjunctionwithothersystemsfortallerbuildingsandasastand-alonesysteminlow-tomedium-risebuildings.Whiletheuseofstructuralsteelinbracedframesiscommon,concreteframesaremorelikelytobeofthelarger-scalevariety.Ofspecialinterestinareasofhighseismicityistheuseoftheeccentricbracedframe.Again,analysiscanbebySTRESS,STRUDL,oranyoneofaseriesoftwo–orthreedimensionalanalysiscomputerprograms.Andagain,center-to-centerdimensionsareusedcommonlyinthepreliminaryanalysis.ShearwallsTheshearwallisyetanotherstepforwardalongaprogressionofever-stifferstructuralsystems.Thesystemischaracterizedbyrelativelythin,generally(butnotalways)concreteelementsthatprovidebothstructuralstrengthandseparationbetweenbuildingfunctions.Inhigh-risebuildings,shearwallsystemstendtohavearelativelyhighaspectratio,thatis,theirheighttendstobelargecomparedtotheirwidth.Lackingtensioninthefoundationsystem,anystructuralelementislimitedinitsabilitytoresistoverturningmomentbythewidthofthesystemandbythegravityloadsupportedbytheelement.Limitedtoanarrowoverturning,Oneobvioususeofthesystem,whichdoeshavetheneededwidth,isintheexteriorwallsofbuilding,wheretherequirementforwindowsiskeptsmall.Structuralsteelshearwalls,generallystiffenedagainstbucklingbyaconcreteoverlay,havefoundapplicationwhereshearloadsarehigh.Thesystem,intrinsicallymoreeconomicalthansteelbracing,isparticularlyeffectiveincarryingshearloadsdownthroughthetallerfloorsintheareasimmediatelyabovegrade.Thesystemhasthefurtheradvantageofhavinghighductilityafeatureofparticularimportanceinareasofhighseismicity.Theanalysisofshearwallsystemsismadecomplexbecauseoftheinevitablepresenceoflargeopeningsthroughthesewalls.Preliminaryanalysiscanbebytruss-analogy,bythefiniteelementmethod,orbymakinguseofaproprietarycomputerprogramdesignedtoconsidertheinteraction,orcoupling,ofshearwalls.FramedorBracedTubesTheconceptoftheframedorbracedorbracedtubeeruptedintothetechnologywiththeIBMBuildinginPittsburgh,butwasfollowedimmediatelywiththetwin110-storytowersoftheWorldTradeCenter,NewYorkandanumberofotherbuildings.Thesystemischaracterizedbythree–dimensionalframes,bracedframes,orshearwalls,formingaclosedsurfacemoreorlesscylindricalinnature,butofnearlyanyplanconfiguration.Becausethosecolumnsthatresistlateralforcesareplacedasfaraspossiblefromthecancroidsofthesystem,theoverallmomentofinertiaisincreasedandstiffnessisveryhigh.Theanalysisoftubularstructuresisdoneusingthree-dimensionalconcepts,orbytwo-dimensionalanalogy,wherepossible,whichevermethodisused,itmustbecapableofaccountingfortheeffectsofshearlag.Thepresenceofshearlag,detectedfirstinaircraftstructures,isaseriouslimitationinthestiffnessofframedtubes.Theconcepthaslimitedrecentapplicationsofframedtubestotheshearof60stories.Designershavedevelopedvarioustechniquesforreducingtheeffectsofshearlag,mostnoticeablytheuseofbelttrusses.Thissystemfindsapplicationinbuildingsperhaps40storiesandhigher.However,exceptforpossibleaestheticconsiderations,belttrussesinterferewithnearlyeverybuildingfunctionassociatedwiththeoutsidewall;thetrussesareplacedoftenatmechanicalfloors,mushtothedisapprovalofthedesignersofthemechanicalsystems.Nevertheless,asacost-effectivestructuralsystem,thebelttrussworkswellandwilllikelyfindcontinuedapprovalfromdesigners.Numerousstudieshavesoughttooptimizethelocationofthesetrusses,withtheoptimumlocationverydependentonthenumberoftrussesprovided.Experiencewouldindicate,however,thatthelocationofthesetrussesisprovidedbytheoptimizationofmechanicalsystemsandbyaestheticconsiderations,astheeconomicsofthestructuralsystemisnothighlysensitivetobelttrusslocation.Tube-in-TubeStructuresThetubularframingsystemmobilizeseverycolumnintheexteriorwallinresistingover-turningandshearingforces.Theterm‘tube-in-tube’islargelyself-explanatoryinthatasecondringofcolumns,theringsurroundingthecentralservicecoreofthebuilding,isusedasaninnerframedorbracedtube.Thepurposeofthesecondtubeistoincreaseresistancetooverturningandtoincreaselateralstiffness.Thetubesneednotbeofthesamecharacter;thatis,onetubecouldbeframed,whiletheothercouldbebraced.Inconsideringthissystem,isimportanttounderstandclearlythedifferencebetweentheshearandtheflexuralcomponentsofdeflection,thetermsbeingtakenfrombeamanalogy.Inaframedtube,theshearcomponentofdeflectionisassociatedwiththebendingdeformationofcolumnsandgirders(i.e,thewebsoftheframedtube)whiletheflexuralcomponentisassociatedwiththeaxialshorteningandlengtheningofcolumns(i.e,theflangesoftheframedtube).Inabracedtube,theshearcomponentofdeflectionisassociatedwiththeaxialdeformationofdiagonalswhiletheflexuralcomponentofdeflectionisassociatedwiththeaxialshorteningandlengtheningofcolumns.Followingbeamanalogy,ifplanesurfacesremainplane(i.e,thefloorslabs),thenaxialstressesinthecolumnsoftheoutertube,beingfartherformtheneutralaxis,willbesubstantiallylargerthantheaxialstressesintheinnertube.However,inthetube-in-tubedesign,whenoptimized,theaxialstressesintheinnerringofcolumnsmaybeashigh,orevenhigher,thantheaxialstressesintheouterring.Thisseeminganomalyisassociatedwithdifferencesintheshearingcomponentofstiffnessbetweenthetwosystems.Thisiseasiesttounder-standwheretheinnertubeisconceivedasabraced(i.e,shear-stiff)tubewhiletheoutertubeisconceivedasaframed(i.e,shear-flexible)tube.CoreInteractiveStructuresCoreinteractivestructuresareaspecialcaseofatube-in-tubewhereinthetwotubesarecoupledtogetherwithsomeformofthree-dimensionalspaceframe.Indeed,thesystemisusedoftenwhereintheshearstiffnessoftheoutertubeiszero.TheUnitedStatesSteelBuilding,Pittsburgh,illustratesthesystemverywell.Here,theinnertubeisabracedframe,theoutertubehasnoshearstiffness,andthetwosystemsarecouplediftheywereconsideredassystemspassinginastraightlinefromthe“hat”structure.Notethattheexteriorcolumnswouldbeimproperlymodelediftheywereconsideredassystemspassinginastraightlinefromthe“hat”tothefoundations;thesecolumnsareperhaps15%stifferastheyfollowtheelasticcurveofthebracedcore.Notealsothattheaxialforcesassociatedwiththelateralforcesintheinnercolumnschangefromtensiontocompressionovertheheightofthetube,withtheinflectionpointatabout5/8oftheheightofthetube.Theoutercolumns,ofcourse,carrythesameaxialforceunderlateralloadforthefullheightofthecolumnsbecausethecolumnsbecausetheshearstiffnessofthesystemisclosetozero.Thespacestructuresofoutriggergirdersortrusses,thatconnecttheinnertubetotheoutertube,arelocatedoftenatseverallevelsinthebuilding.TheAT&Theadquartersisanexampleofanastonishingarrayofinteractiveelements:Thestructuralsystemis94ft(28.6m)wide,196ft(59.7m)long,and601ft(183.3m)high.Twoinnertubesareprovided,each31ft(9.4m)by40ft(12.2m),centered90ft(27.4m)apartinthelongdirectionofthebuilding.Theinnertubesarebracedintheshortdirection,butwithzeroshearstiffnessinthelongdirection.Asingleoutertubeissupplied,whichencirclesthebuildingperimeter.Theoutertubeisamoment-resistingframe,butwithzeroshearstiffnessforthecenter50ft(15.2m)ofeachofthelongsides.Aspace-trusshatstructureisprovidedatthetopofthebuilding.AsimilarspacetrussislocatednearthebottomofthebuildingTheentireassemblyislaterallysupportedatthebaseontwinsteel-platetubes,becausetheshearstiffnessoftheoutertubegoestozeroatthebaseofthebuilding.CellularstructuresAclassicexampleofacellularstructureistheSearsTower,Chicago,abundledtubestructureofnineseparatetubes.WhiletheSearsTowercontainsninenearlyidenticaltubes,thebasicstructuralsystemhasspecialapplicationforbuildingsofirregularshape,astheseveraltubesneednotbesimilarinplanshape,Itisnotuncommonthatsomeoftheindividualtubesoneofthestrengthsandoneoftheweaknessesofthesystem.Thisspecialweaknessofthissystem,particularlyinframedtubes,hastodowiththeconceptofdifferentialcolumnshortening.Theshorteningofacolumnunderloadisgivenbytheexpression△=ΣfL/EForbuildingsof12ft(3.66m)floor-to-floordistancesandanaveragecompressivestressof15ksi(138MPa),theshorteningofacolumnunderloadis15(12)(12)/29,000or0.074in(1.9mm)perstory.At50stories,thecolumnwillhaveshortenedto3.7in.(94mm)lessthanitsunstressedlength.Whereonecellofabundledtubesystemis,say,50storieshighandanadjacentcellis,say,100storieshigh,thosecolumnsneartheboundarybetween.thetwosystemsneedtohavethisdifferentialdeflectionreconciled.Majorstructuralworkhasbeenfoundtobeneededatsuchlocations.Inatleastonebuilding,theRialtoProject,Melbourne,thestructuralengineerfounditnecessarytoverticallypre-stressthelowerheightcolumnssoastoreconcilethedifferentialdeflectionsofcolumnsincloseproximitywiththepost-tensioningoftheshortercolumnsimulatingtheweighttobeaddedontoadjacent,highercolumns.二、原文翻譯:抗側(cè)向荷載的結(jié)構(gòu)體系常用的結(jié)構(gòu)體系若已測出荷載量達(dá)數(shù)千萬磅重,那么在高層建筑設(shè)計中就沒有多少可以進(jìn)行極其復(fù)雜的構(gòu)思余地了。確實,較好的高層建筑普遍具有構(gòu)思簡單、表現(xiàn)明晰的特點。這并不是說沒有進(jìn)行宏觀構(gòu)思的余地。實際上,正是因為有了這種宏觀的構(gòu)思,新奇的高層建筑體系才得以發(fā)展,可能更重要的是:幾年以前才出現(xiàn)的一些新概念在今天的技術(shù)中已經(jīng)變得平常了。如果忽略一些與建筑材料密切相關(guān)的概念不談,高層建筑里最為常用的結(jié)構(gòu)體系便可分為如下幾類:抗彎矩框架。支撐框架,包括偏心支撐框架。剪力墻,包括鋼板剪力墻。筒中框架。筒中筒結(jié)構(gòu)。核心交互結(jié)構(gòu)。框格體系或束筒體系。特別是由于最近趨向于更復(fù)雜的建筑形式,同時也需要增加剛度以抵抗幾力和地震力,大多數(shù)高層建筑都具有由框架、支撐構(gòu)架、剪力墻和相關(guān)體系相結(jié)合而構(gòu)成的體系。而且,就較高的建筑物而言,大多數(shù)都是由交互式構(gòu)件組成三維陳列。將這些構(gòu)件結(jié)合起來的方法正是高層建筑設(shè)計方法的本質(zhì)。其結(jié)合方式需要在考慮環(huán)境、功能和費用后再發(fā)展,以便提供促使建筑發(fā)展達(dá)到新高度的有效結(jié)構(gòu)。這并不是說富于想象力的結(jié)構(gòu)設(shè)計就能夠創(chuàng)造出偉大建筑。正相反,有許多例優(yōu)美的建筑僅得到結(jié)構(gòu)工程師適當(dāng)?shù)闹С志捅粍?chuàng)造出來了,然而,如果沒有天賦甚厚的建筑師的創(chuàng)造力的指導(dǎo),那么,得以發(fā)展的就只能是好的結(jié)構(gòu),并非是偉大的建筑。無論如何,要想創(chuàng)造出高層建筑真正非凡的設(shè)計,兩者都需要最好的。雖然在文獻(xiàn)中通??梢砸姷接嘘P(guān)這七種體系的全面性討論,但是在這里還值得進(jìn)一步討論。設(shè)計方法的本質(zhì)貫穿于整個討論。設(shè)計方法的本質(zhì)貫穿于整個討論中??箯澗乜蚣芸箯澗乜蚣芤苍S是低,中高度的建筑中常用的體系,它具有線性水平構(gòu)件和垂直構(gòu)件在接頭處基本剛接之特點。這種框架用作獨立的體系,或者和其他體系結(jié)合起來使用,以便提供所需要水平荷載抵抗力。對于較高的高層建筑,可能會發(fā)現(xiàn)該本系不宜作為獨立體系,這是因為在側(cè)向力的作用下難以調(diào)動足夠的剛度。我們可以利用STRESS,STRUDL或者其他大量合適的計算機程序進(jìn)行結(jié)構(gòu)分析。所謂的門架法分析或懸臂法分析在當(dāng)今的技術(shù)中無一席之地,由于柱梁節(jié)點固有柔性,并且由于初步設(shè)計應(yīng)該力求突出體系的弱點,所以在初析中使用框架的中心距尺寸設(shè)計是司空慣的。當(dāng)然,在設(shè)計的后期階段,實際地評價結(jié)點的變形很有必要。支撐框架支撐框架實際上剛度比抗彎矩框架強,在高層建筑中也得到更廣泛的應(yīng)用。這種體系以其結(jié)點處鉸接或則接的線性水平構(gòu)件、垂直構(gòu)件和斜撐構(gòu)件而具特色,它通常與其他體系共同用于較高的建筑,并且作為一種獨立的體系用在低、中高度的建筑中。三.建筑設(shè)計說明部分一、工程概況:工程名稱:泰安市某集團(tuán)辦公樓;工程位置:泰安市;工程總面積:4562㎡,主樓85,高19.09m,每層層高3.6m結(jié)構(gòu)形式:現(xiàn)澆整體框架。二、建筑物功能與特點:該擬建的建筑位于泰安市市內(nèi),設(shè)計內(nèi)容:此樓為辦公樓,此建筑占地面積912.4m2,總建筑面積為4562m2平面設(shè)計建筑朝向為南北向,平面布置滿足長寬比小于5,采用縱向3.9m、橫向6.0m、2.4m、6.0m的柱距,滿足建筑開間模數(shù)和進(jìn)深的要求。2、立面設(shè)計該建筑立面為了滿足采光和美觀需求,設(shè)置了大面積的玻璃窗。外墻面根據(jù)《98J1——工程做法》選用面磚飾面,不同分隔區(qū)采用不同的顏色區(qū)隔,以增強美感。3、防火防火等級為二級,安全疏散距離滿足房門至外部出口或封閉樓梯間最大距離小于35m,大房間設(shè)前后兩個門,小房間設(shè)一個門,滿足防火要求;室內(nèi)消火栓設(shè)在走廊兩側(cè),每層兩側(cè)及中間設(shè)3個消火栓,最大間距25m,滿足間距50m的要求。4、抗震建筑的平立面布置規(guī)則,建筑的質(zhì)量分布和剛度變化均勻,樓層沒有錯層,滿足抗震要求。屋面屋面形式為平屋頂;平屋頂排水坡度為2%,排水坡度的形式為墊置坡度,排水方式為內(nèi)排水。屋面做法采用《98J1——工程做法》中柔性防水,聚苯乙烯泡沫塑料板保溫層屋面。三、設(shè)計資料(一)、自然條件1、工程地質(zhì)條件:詳見地質(zhì)勘查報告。2、抗震設(shè)防:7度3、防火等級:二級4、建筑物類型:乙類5、基本風(fēng)壓:W0=0.40KN/m2,主導(dǎo)風(fēng)向:西北風(fēng)6、基本雪壓:S0=0.35KN/m27、凍土深度:-0.6m8、地下水位:最低:-1.7m最高:-1.5m9、氣象條件:年平均溫度:12oC最高溫度:42oC最低溫度:-12oC年總降雨量:710mm10、樓面活荷:辦公室:2.0KN/m2;走道:2.0KN/m2。(二)、工程做法1、屋面做法——高聚物改性瀝青卷材防水=1\*GB3①4厚高聚物改性瀝青卷材防水層(帶砂、小片石,作為保護(hù)層)=2\*GB3②20厚1:3水泥砂漿層找平層=3\*GB3③1:6水泥焦渣找2%坡,最薄處30厚=4\*GB3④50厚聚苯乙烯泡沫塑料板保溫層=5\*GB3⑤鋼筋混凝土基層2、樓面做法(1)房間、走道樓面——現(xiàn)制水磨石①12厚1:2.5水泥磨磨石樓面磨光光打蠟②素水泥漿結(jié)合層一一道③20厚1:3水泥砂漿找找平層,上臥臥分隔條。④40厚C20細(xì)石混凝土土墊層(后澆澆層)⑤鋼筋混凝土樓板(2)衛(wèi)生間樓面———鋪地磚①8厚地磚樓面,干水水泥擦縫②撒素水泥面(灑適適量清水)③20厚1:4干硬性水泥泥砂漿結(jié)合層層④60厚C20細(xì)石混凝土土向地漏找平平,最薄處30厚⑤聚氨酯三遍涂膜防防水層厚1.5~1.8或用其他防防水涂料防水水層,防水層層周邊卷起高高150⑥20厚1:3水泥砂漿找找平層,四周周抹小八字角角⑦現(xiàn)澆鋼筋混凝土樓樓板(3)內(nèi)外墻面做法———紙筋(麻刀刀)灰墻面①刷內(nèi)墻涂料②2厚紙筋(麻刀)灰灰抹面③9厚1:3石灰膏砂漿漿④5厚1:3:9水泥石石膏砂漿打底底劃出紋理⑤加氣混凝土界面處處理劑一道(4)散水做法:混凝凝土散水①50厚C15混凝土撒11:1水泥砂子子,壓實趕光光②150厚3:7灰灰土墊層③素土夯實向外坡44%四.結(jié)構(gòu)設(shè)計計算書結(jié)構(gòu)布置及結(jié)構(gòu)計計算簡圖的確確定,構(gòu)平面面布置如圖1所示。圖1結(jié)構(gòu)平面布置圖圖1結(jié)構(gòu)平面布置圖2、確定梁柱截面尺尺寸:主梁:邊跨(ABB,CD)梁:h=((1/8~11/12)ll=(1/88~1/122)×6000==750mmm~500mmm取h=600mm,,b=(1//3~1/22)l=(11/3~1//2)×600=2200~3000,取b=2550mm中跨(BC)梁:hh=(1/88~1/122)l=(11/8~1//12)×2400==300mmm~200mmm取h=400mm,,b=2500mm連系梁:邊柱(AA軸,D軸),中柱柱(B軸,C軸)上連系系梁:h=(1/12~~1/15))l=(1//12~1//15)×33900=325mmm~260mm取h=400mmm,b>4400/4==100取b=250mmm柱截面:H=46600mm,,b=(1//15~1//20)H==(1/8~~1/12))×4600==306mmm~230mmm取b×h=300mmm×450mmm現(xiàn)澆樓板厚1000mm,滿足h/ll01≥1/503、計算簡圖的確定定(見圖2)根據(jù)地質(zhì)資料,確確定基礎(chǔ)頂面面離室外地面面為700mm,,由此求得底底層層高為55.5m。各各梁柱構(gòu)件的的線剛度經(jīng)計計算后列于圖圖2,其中在求求梁截面慣性性矩時考慮到到現(xiàn)澆樓板的的作用,梁取取I=2I0(I0為不考慮樓樓板翼緣作用用的梁截面慣慣性矩)。AB,CD跨梁::BC跨梁:中部各層柱:首層柱:注:圖中數(shù)字為線剛度,單位:×注:圖中數(shù)字為線剛度,單位:×10-4Em3Ec=3.25×104N/mm2Eb=3.00×104N/mm2圖2:結(jié)構(gòu)計算簡圖荷載計算恒載計算屋面框架梁線荷載載標(biāo)準(zhǔn)值:三氈四油上鋪小石石子防水層00.35KNN/m220厚1:3水泥砂漿層找平層層0.002×20==0.4KKN/m22120厚膨脹珍珠珠巖保溫層0.122×7=0..84KNN/m2100厚現(xiàn)澆鋼筋筋混凝土樓板板00.1×255=2.5KN/mm2裝飾層:15厚紙紙筋石灰抹底底0..015×116=0.224KN//m2屋面恒載:4.33KNN/m2邊跨(AB、CDD跨)框架梁自重0.25××0.6×225=3.775KN//m2梁側(cè)粉刷2×(0.6-0.1)×0.022×17=00.34KKN/m22中跨框架梁自重0..25×0..4×25==2.5KNN/m2梁側(cè)粉刷2××(0.4-0.1)×0.022×17=00.2KNN/m2因此,作用在頂層層框架梁上的的線荷載為::(圖3)g5AB1=g55CD1=4.09KKN/mg5BC1=2..7KN/mg5AB2=g55CD2=4.33×3.9=16.899KN/mg5CD2=4..33×2.44=10.339KN/m(2)樓面框架梁線線荷載標(biāo)準(zhǔn)值值20厚水泥砂漿面層0.002×20=0..40KN//m2100厚現(xiàn)澆鋼筋筋混凝土樓板板0.11×25=22.5KNN/m215厚紙筋石灰抹底0..015×116=0.224KN//m2樓面恒載3.114KN//m2邊跨(AB、CDD跨)框架梁自重重及梁側(cè)粉刷刷44.09KKN/m邊跨填充墻自重0..24×(3.6-0.6)×19=113.68KKN/m墻面粉刷(3.6-0.6)×0.022×2×177=2.044KN/m中跨框架梁自重及及梁側(cè)粉刷22.7KN//m因此,作用在中間間層框架梁上上的線荷載為為(圖3):gAB1=gCDD1=4.09+115.72==19.811KN/mgBC1=2.7KKN/mgAB2=gCDD2=3.14××3.9=112.25KKN/mgBC2=3.114×2.44=7.544KN/mm(3)、屋面框架節(jié)點點集中荷載標(biāo)標(biāo)準(zhǔn)值邊柱連系梁自重0.225×0.440×3.99×25=99.75KNN粉刷0.022×(0.44-0.10))×2×3..9×17+00.25×0.02×33.9×177=1.133KN600高女兒墻自自重0.66×3.9×0.24×19==10.677KN粉刷0.66×0.022×2×3..9×17+0..28×0..02×3..9×17==1.96KNN連系梁傳來屋面自自重11/2×3..9×1/2××3.9×4.33=16.466KN頂層邊節(jié)點集中荷荷載GG5A=G5D=1112.87KKN中柱連系梁自重及及粉刷9.775+0.7796=100.55KNN連系梁傳來屋面自自重1/2×(1.5+33.9)×2.4//2×4.333=16..46KN頂層中節(jié)點集中荷荷載G5B=G5C=411.04KNN(4)樓面框架節(jié)點集集中荷載標(biāo)準(zhǔn)準(zhǔn)值邊柱連系梁自重及及粉刷9.755+1.133=10..88KN塑鋼窗自重2.11×2.2××0.45==2.08KKN窗下墻自重0.244×1.0××3.6×119=16..42KN粉刷0.02××2×1×33.6×177=2.455KN窗邊墻自重1.55×(3.6-1.0-0.6)×0.24××19=15..05KN粉刷0..02×2××1.5×2.2×17=2..24KN連系梁傳來樓面自自重1/2×33.9×1//2×3.99×3.144=11.994KN框架柱自重0.33×0.455×3.6××25=122.15KNN粉刷【(0.33+0.455)×2-3×0.224】×0.022×3.6××17=0..95KNN外貼面磚0.008×0.55×3.3××19.8==2.61KNN中間層邊節(jié)點集中中荷載GD=73.998KN中間柱連系梁自重重及粉刷9.75++0.8=110.55KKN內(nèi)縱墻自重3.6××(3.6-0.4)×0.244×19=552.53KN粉刷33.6×3..2×2×00.02×117=7.883KN扣除門洞重加上門門重-2.4×11.0×(5.24-0.2)=-12.100KN框架梁傳來屋面自自重1/2×33.9+3.9-2.4)××1/2×22.14×33.14=110.17KKN1//2×3.99×1/2××3.9×22.14=111.94KKN框架柱自重12..15KNN粉刷0.995KN中間層中節(jié)點集中中荷載GB=GC=94.022KN(5)恒載作用下結(jié)構(gòu)構(gòu)計算簡圖(圖3)2、樓面活荷載計算算樓面活荷載作用下下結(jié)構(gòu)計算簡簡圖如圖4所示。圖中中各荷載計算算如下:(1)、屋頂板的活荷荷載標(biāo)準(zhǔn)值p5AB=p5CCD=0.55×3.9=11.95KNN/mp5BC=0.5××2.4=11.2KNN/m(2)、樓面板的活荷荷載標(biāo)準(zhǔn)值pAB=pCD==2.0×3.9=77.8KN//mpBC=2.0×22.4=4..8KN//m圖4:活荷載作用下結(jié)構(gòu)計算簡圖圖3:恒載作用下結(jié)構(gòu)計算簡圖圖4:活荷載作用下結(jié)構(gòu)計算簡圖圖3:恒載作用下結(jié)構(gòu)計算簡圖(3)、屋頂框架節(jié)點點集中荷載標(biāo)標(biāo)準(zhǔn)值由連系梁傳來的屋屋面活荷載P5A=P5D=1/2×3..9×1/22×3.9××0.5=11.90KNNP5B=P5C=1/2×(1.5+33.9)×2.4//2×0.55+1/4××3.9×33.9×0..5=3.552KN(4)、樓面框架節(jié)點點集中荷載標(biāo)標(biāo)準(zhǔn)值樓面連系梁傳來的的樓面活荷載載PA=PD=1/22×3.9××1/2×33.9×2=7..6KNPPB=PC=1/2×(1.5+33.9)×2.4//2×2+11/4×3..9×3.99×2=144.08KNN3、風(fēng)荷載計算風(fēng)壓標(biāo)準(zhǔn)值計算公公式為wk=βzμsμzw0因結(jié)構(gòu)高度H=118.6m<<30m,BB=14.44,H/B==1.29<1.55,可取βz=1.0μz可查荷載規(guī)范,按按地面粗糙程程度和建筑物物離地面高度度確定。地面面粗糙程度為為B類,通過插入法法求得。表1離地面高度(m)51015204.057.6511.2514.8518.45風(fēng)壓高度系數(shù)μzz1.01.01.01.0351.1361.216對于矩形平面μss=1.3;將風(fēng)荷載載換算成作用用于框架每層層節(jié)點上的集集中荷載,計計算過程如表表2所示。表中中A為一榀框架架各層節(jié)點的的受風(fēng)面積,計計算結(jié)果如圖圖5所示。橫向風(fēng)荷載計算表2層次βzμsμzw0(KN/m2)WK(KN/m2)A(m2)FwK(KN)51.01.31.2160.40.6308.645.89741.01.31.1360.40.59114.048.57131.01.31.0350.40.23814.047.92621.01.31.00.40.52014.047.42711.01.31.00.40.414.047.301轉(zhuǎn)化為集中風(fēng)載::(受荷面與與計算單元同同)五層Fw5K==0.63××3.9×(0.6+33.6/2)=5.8997KN四層Fw5K==3.6×33.9×(0.63++0.5911)÷2=8..571KNN三層Fw5K==3.6×33.9×(0.5911+0.5338)÷2=7..926KNN二層Fw5K==3.6×33.9×(0.5388+0.522)÷2=7..427KNN一層Fw5K==3.6×33.9×(0.52++0.52)÷2=7..301KNN4、風(fēng)載下的位移計計算(1)、計算簡圖,見見圖5。(2)、柱Kc值C30,EEc值為3.0×1104N/mm柱Kc值計算表3層數(shù)截面(m2)混凝土強度等級慣性矩Ic(m4)(m3)(KNm)2~50.3×0.455C302.28×10--36.33×11.899×100410.3×0.455C302.28×10--34.95×10--41.485×1004圖5:風(fēng)荷載作用下結(jié)構(gòu)計算簡圖(單位KN)圖5:風(fēng)荷載作用下結(jié)構(gòu)計算簡圖(單位KN)(3)、梁Kb值2.4m梁:6.0m梁:(4)、及的值及的值表4層柱類型根數(shù)底層邊柱15/4.95==3.030.7027564中柱(15+11.1)/4.95=5.270.794854.84∑D1610.8二三四五層邊柱15*2/(2**6.33)=2.3770.54949.54中柱(15+11.1)*2/(2*6.33)=4.1220.671178.14∑D2127.6荷載作用下的框架架內(nèi)力分析荷載取設(shè)計值,它它等于荷載標(biāo)標(biāo)準(zhǔn)值乘以相相應(yīng)的荷載分分項系數(shù)。1、豎向恒載作用下下的內(nèi)力計算算豎向恒載作用下的的內(nèi)力計算采采用力矩二次次分配法。(1)、荷載簡化梁上分布荷載由矩矩形和梯形兩兩部分組成,在在求固端彎矩矩時,將梯形形分布荷載及及三角形荷載載化作等效均均布荷載。頂層:AB,CD跨(αα=1.955/6.0==0.3255)BC跨1~~4層:AB,CD跨(αα=1.955/6.0==0.3255)BC跨(3)、彎矩分配系數(shù)數(shù)彎矩分配系系數(shù)表5構(gòu)件名稱轉(zhuǎn)動剛度S(KNN·m)相對轉(zhuǎn)動剛度框架梁邊跨4Kb=4×15××103=60×10033.0300中跨4Kb=2×11..1×103=22.2×1031.21框架柱邊跨4Kc=4×14..95×103=19.8×1031.0000中跨4Kc=4×6.333×103=25.322×1031.2799各節(jié)點桿件分配系系數(shù)見下表:各節(jié)點桿件分配系系數(shù)表表6節(jié)點[左梁右梁上柱下柱61.279+3..030=44.3090.7030.2973,4,51.279+3..030+11.279==5.58880.5420.2290.22921.279+3..030+11.000==5.30990.5710.2410.188123.030+1..121+11.279==5.430.5880.2060.2369,10,113.030+1..279+11.21+11.279==6.70990.4520.1660.1910.19183.030+1..279+11.121++1.0000=6.4330.4710.1780.1990.156(4)、桿件固端彎矩矩固端彎矩計算表77AB跨BC跨簡圖固端彎矩MF=MJ(KN/m)簡圖固端彎矩MF=MK(KN/mm)頂層21.59KN//m×21.59×6..02=64.77715.71KN//m1/3×15.771×1.22=7.54中層17KN/m×17×6.62==518.5KN/m1/3×8.5××1.22=4.08(5)、桿件固端彎矩矩分配與傳遞遞上柱下柱右梁左左梁上柱下柱右梁圖6恒載力矩分配與傳傳遞傳遞系數(shù):遠(yuǎn)端固定,傳傳遞系數(shù)為遠(yuǎn)遠(yuǎn)端滑動鉸質(zhì)質(zhì),傳遞系數(shù)數(shù)為-1。彎矩分配:恒載作用下下,框架的彎彎矩分配計算算見圖6,框架的彎彎矩見圖7;活載作用用下,框架的的彎矩分配計計算見圖,框框架的彎矩見見圖。在豎向荷載作用下下,考慮框架架梁端的塑性性內(nèi)力分布,取取彎矩調(diào)幅系系數(shù)為0.88,調(diào)幅后,恒恒載及活載彎彎矩圖見恒載載作用下框架架彎矩圖及活活載用框架彎彎矩圖內(nèi)數(shù)值值。求得桿端內(nèi)力后,通通過靜力平衡衡條件,可求求得相應(yīng)的剪剪力和軸力,見見圖8,9,10。梁端剪力及柱軸力力計算梁端剪力V=Vq+Vm式中:Vq——梁梁上均布荷載載引起的剪力力,Vq=ql;Vm——梁端彎矩引起起的剪力,VVm=柱軸力NN=V+P式中:V——梁端端剪力;P———節(jié)點集中中力及柱自重重。下圖為恒載下框架架彎矩圖6圖6恒載下框框架彎矩圖2、豎向活荷載作用用下的內(nèi)力計計算(1)荷載簡化圖7調(diào)幅后恒載下下框架彎矩圖圖(2)桿件固端彎矩固端彎矩計計算表8AB跨BC跨簡圖固端彎矩M0=MJ(KN/m)簡圖固端彎矩MJ=MK(KN/mm)2.44KN/mm×2.44×6.002=6.721.05KN/mm1/3×1.055×1.22=0.58.99KN/mm×8.99×6.002=26.9994.2KN/m1/3×4.2××1.22=2.024、風(fēng)載下內(nèi)力計算算風(fēng)荷載作用下的結(jié)結(jié)構(gòu)計算如圖圖5所示。內(nèi)力力計算采用DD值法,計算算過程見圖和和圖,其中可可通過有關(guān)表表格查得反彎彎點高度y0。風(fēng)荷載下下的彎矩圖見見圖。柱軸力力和梁剪力圖圖見圖9、圖10圖8活載彎矩分配圖(KKN/m)圖9:恒載下梁的剪力力圖(KN)圖10:恒載下柱的軸力力圖(KN)圖12:活荷載作用下的的彎矩圖(KKNm)圖12:活荷調(diào)幅后的彎彎矩圖(KNNm)圖13:活荷載下梁的剪剪力圖(KNN)圖14:活荷載下柱的軸軸力圖(KN)風(fēng)荷載作用下的內(nèi)內(nèi)力計算:設(shè)計值×1.4(1)風(fēng)荷載的計計算簡圖見下下圖所示,其計算采用D值法,計算過程見見下表8層力號總Fwk(KN)KaD(KN/m))總D(KN/m)V=D/總D*總總Fwk58.256邊柱2.370.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論