




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,其中正視圖是邊長(zhǎng)為4的正三角形,俯視圖是由邊長(zhǎng)為4的正三角形和一個(gè)半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.2.若為純虛數(shù),則z=()A. B.6i C. D.203.已知集合,,則()A. B. C. D.4.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對(duì)稱 D.函數(shù)圖像關(guān)于對(duì)稱5.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.6.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實(shí)數(shù),則實(shí)數(shù)a等于()A. B. C.- D.-7.以下兩個(gè)圖表是2019年初的4個(gè)月我國(guó)四大城市的居民消費(fèi)價(jià)格指數(shù)(上一年同月)變化圖表,則以下說(shuō)法錯(cuò)誤的是()(注:圖表一每個(gè)城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個(gè)月份的條形圖從左到右四個(gè)城市依次是北京、天津、上海、重慶)A.3月份四個(gè)城市之間的居民消費(fèi)價(jià)格指數(shù)與其它月份相比增長(zhǎng)幅度較為平均B.4月份僅有三個(gè)城市居民消費(fèi)價(jià)格指數(shù)超過(guò)102C.四個(gè)月的數(shù)據(jù)顯示北京市的居民消費(fèi)價(jià)格指數(shù)增長(zhǎng)幅度波動(dòng)較小D.僅有天津市從年初開(kāi)始居民消費(fèi)價(jià)格指數(shù)的增長(zhǎng)呈上升趨勢(shì)8.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)9.設(shè)全集U=R,集合,則()A. B. C. D.10.若(),,則()A.0或2 B.0 C.1或2 D.111.點(diǎn)為棱長(zhǎng)是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長(zhǎng)度為()A. B. C. D.12.設(shè)i是虛數(shù)單位,若復(fù)數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)______.14.己知雙曲線的左、右焦點(diǎn)分別為,直線是雙曲線過(guò)第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_(kāi)______15.如圖是一個(gè)幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_(kāi)________.16.已知點(diǎn)是拋物線的準(zhǔn)線上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),P為拋物線上的點(diǎn),且,若雙曲線C中心在原點(diǎn),F(xiàn)是它的一個(gè)焦點(diǎn),且過(guò)P點(diǎn),當(dāng)m取最小值時(shí),雙曲線C的離心率為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長(zhǎng).18.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.19.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當(dāng)時(shí),證明:對(duì)任意恒成立.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長(zhǎng).21.(12分)在孟德?tīng)栠z傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對(duì)出現(xiàn)例如,豌豆攜帶這樣一對(duì)遺傳因子:使之開(kāi)紅花,使之開(kāi)白花,兩個(gè)因子的相互組合可以構(gòu)成三種不同的遺傳性狀:為開(kāi)紅花,和一樣不加區(qū)分為開(kāi)粉色花,為開(kāi)白色花.生物在繁衍后代的過(guò)程中,后代的每一對(duì)遺傳因子都包含一個(gè)父系的遺傳因子和一個(gè)母系的遺傳因子,而因?yàn)樯臣?xì)胞是由分裂過(guò)程產(chǎn)生的,每一個(gè)上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過(guò)程都是相互獨(dú)立的.可以把第代的遺傳設(shè)想為第次實(shí)驗(yàn)的結(jié)果,每一次實(shí)驗(yàn)就如同拋一枚均勻的硬幣,比如對(duì)具有性狀的父系來(lái)說(shuō),如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對(duì)母系也一樣.父系?母系各自隨機(jī)選擇得到的遺傳因子再配對(duì)形成子代的遺傳性狀.假設(shè)三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現(xiàn),則在隨機(jī)雜交實(shí)驗(yàn)中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實(shí)際上是父系和母系中兩個(gè)遺傳因子的個(gè)數(shù)之比.基于以上常識(shí)回答以下問(wèn)題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對(duì)某一植物,經(jīng)過(guò)實(shí)驗(yàn)觀察發(fā)現(xiàn)遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個(gè)體,在進(jìn)行第一代雜交實(shí)驗(yàn)時(shí),假設(shè)遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續(xù)對(duì)(2)中的植物進(jìn)行雜交實(shí)驗(yàn),每次雜交前都需要剔除性狀為的個(gè)體假設(shè)得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設(shè)第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數(shù)列.(4)求的通項(xiàng)公式,如果這種剔除某種遺傳性狀的隨機(jī)雜交實(shí)驗(yàn)長(zhǎng)期進(jìn)行下去,會(huì)有什么現(xiàn)象發(fā)生?22.(10分)已知,,求證:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】由題意得到該幾何體是一個(gè)組合體,前半部分是一個(gè)高為底面是邊長(zhǎng)為4的等邊三角形的三棱錐,后半部分是一個(gè)底面半徑為2的半個(gè)圓錐,體積為故答案為A.點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長(zhǎng)對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長(zhǎng)是幾何體的長(zhǎng);俯視圖的長(zhǎng)是幾何體的長(zhǎng),寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫(huà)出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫(huà)出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫(huà)出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.2.C【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時(shí)故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.3.D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道容易題.4.C【解析】
依題意可得,即函數(shù)圖像關(guān)于對(duì)稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對(duì)稱,又,在上不單調(diào).故正確的只有C,故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.5.A【解析】
根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點(diǎn)睛】本題考查了常見(jiàn)幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.6.A【解析】分析:計(jì)算,由z1,是實(shí)數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實(shí)數(shù),所以,即.故選A.點(diǎn)睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.7.D【解析】
采用逐一驗(yàn)證法,根據(jù)圖表,可得結(jié)果.【詳解】A正確,從圖表二可知,3月份四個(gè)城市的居民消費(fèi)價(jià)格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費(fèi)價(jià)格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個(gè)月的居民消費(fèi)價(jià)格指數(shù)相差不大D錯(cuò)誤,從圖表一可知上海市也是從年初開(kāi)始居民消費(fèi)價(jià)格指數(shù)的增長(zhǎng)呈上升趨勢(shì)故選:D【點(diǎn)睛】本題考查圖表的認(rèn)識(shí),審清題意,細(xì)心觀察,屬基礎(chǔ)題.8.D【解析】
求解一元二次不等式化簡(jiǎn)A,求解對(duì)數(shù)不等式化簡(jiǎn)B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對(duì)數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.9.A【解析】
求出集合M和集合N,,利用集合交集補(bǔ)集的定義進(jìn)行計(jì)算即可.【詳解】,,則,故選:A.【點(diǎn)睛】本題考查集合的交集和補(bǔ)集的運(yùn)算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.10.A【解析】
利用復(fù)數(shù)的模的運(yùn)算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點(diǎn)睛】本小題主要考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.11.C【解析】
設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長(zhǎng)度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長(zhǎng)為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長(zhǎng)度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問(wèn)題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.12.A【解析】
根據(jù)復(fù)數(shù)除法運(yùn)算化簡(jiǎn),結(jié)合純虛數(shù)定義即可求得m的值.【詳解】由復(fù)數(shù)的除法運(yùn)算化簡(jiǎn)可得,因?yàn)槭羌兲摂?shù),所以,∴,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和除法運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
寫(xiě)出展開(kāi)式的通項(xiàng)公式,考慮當(dāng)?shù)闹笖?shù)為零時(shí),對(duì)應(yīng)的值即為常數(shù)項(xiàng).【詳解】的展開(kāi)式通項(xiàng)公式為:,令,所以,所以常數(shù)項(xiàng)為.
故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)系數(shù)的求解,難度較易.解答問(wèn)題的關(guān)鍵是,能通過(guò)展開(kāi)式通項(xiàng)公式分析常數(shù)項(xiàng)對(duì)應(yīng)的取值.14.【解析】
由,則,所以點(diǎn),因?yàn)椋傻?,點(diǎn)坐標(biāo)化簡(jiǎn)為,代入雙曲線的方程求解.【詳解】設(shè),則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,及三角恒等變換,還考查了運(yùn)算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.15.;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長(zhǎng)為的正方形,平面平面,并且,,所以體積是,解得,四個(gè)側(cè)面都是直角三角形,所以計(jì)算出邊長(zhǎng),表面積是考點(diǎn):1.三視圖;2.幾何體的表面積.16.【解析】
由點(diǎn)坐標(biāo)可確定拋物線方程,由此得到坐標(biāo)和準(zhǔn)線方程;過(guò)作準(zhǔn)線的垂線,垂足為,根據(jù)拋物線定義可得,可知當(dāng)直線與拋物線相切時(shí),取得最小值;利用拋物線切線的求解方法可求得點(diǎn)坐標(biāo),根據(jù)雙曲線定義得到實(shí)軸長(zhǎng),結(jié)合焦距可求得所求的離心率.【詳解】是拋物線準(zhǔn)線上的一點(diǎn)拋物線方程為,準(zhǔn)線方程為過(guò)作準(zhǔn)線的垂線,垂足為,則設(shè)直線的傾斜角為,則當(dāng)取得最小值時(shí),最小,此時(shí)直線與拋物線相切設(shè)直線的方程為,代入得:,解得:或雙曲線的實(shí)軸長(zhǎng)為,焦距為雙曲線的離心率故答案為:【點(diǎn)睛】本題考查雙曲線離心率的求解問(wèn)題,涉及到拋物線定義和標(biāo)準(zhǔn)方程的應(yīng)用、雙曲線定義的應(yīng)用;關(guān)鍵是能夠確定當(dāng)取得最小值時(shí),直線與拋物線相切,進(jìn)而根據(jù)拋物線切線方程的求解方法求得點(diǎn)坐標(biāo).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)詳見(jiàn)解析;(2).【解析】
(1)取中點(diǎn),連,可得,結(jié)合平面EAD⊥平面ABCD,可證平面ABCD,進(jìn)而有,再由底面是菱形可得,可得,可證得平面,即可證明結(jié)論;(2)設(shè)底面邊長(zhǎng)為,由EFAB,AB=2EF,,求出體積,建立的方程,即可求出結(jié)論.【詳解】(1)取中點(diǎn),連,底面ABCD為菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,,為中點(diǎn),,平面,平面平面,;(2)設(shè)菱形ABCD的邊長(zhǎng)為,則,,,,,所以菱形ABCD的邊長(zhǎng)為.【點(diǎn)睛】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關(guān)系之間的相互轉(zhuǎn)化,體積問(wèn)題要熟練應(yīng)用等體積方法,屬于中檔題.18.(1)見(jiàn)解析;(2)【解析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標(biāo)系,求平面的一個(gè)法向量與平面的一個(gè)法向量,再利用向量數(shù)量積運(yùn)算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因?yàn)?,所以平面,又平面,所?(2)設(shè),,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點(diǎn),為的中點(diǎn),所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標(biāo)系,,,由平面幾何知識(shí),得.則,,,,所以,,.設(shè)平面的法向量為,由,可得,令,則,,所以.同理,平面的一個(gè)法向量為.設(shè)平面與平面所成角為,則,所以.【點(diǎn)睛】本題考查了線面垂直的判定定理及二面角的平面角的求法,重點(diǎn)考查了空間向量的應(yīng)用,屬中檔題.19.(1)(2)見(jiàn)解析【解析】
(1)因?yàn)?,可得,即可求得答案;?)要證對(duì)任意恒成立,即證對(duì)任意恒成立.設(shè),,當(dāng)時(shí),,即可求得答案.【詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對(duì)任意恒成立.即證對(duì)任意恒成立.設(shè),,當(dāng)時(shí),,,令,解得,當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增.,,,當(dāng)時(shí),對(duì)任意恒成立,即當(dāng)時(shí),對(duì)任意恒成立.【點(diǎn)睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問(wèn)題,解題關(guān)鍵是掌握由導(dǎo)數(shù)求切線方程的解法和根據(jù)導(dǎo)數(shù)求證不等式恒成立的方法,考查了分析能力和計(jì)算能力,屬于難題.20.(1),;(2).【解析】
(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標(biāo)方程;(2)聯(lián)立極坐標(biāo)方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標(biāo)方程為:.轉(zhuǎn)換為極坐標(biāo)方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為:,化為一般
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 精準(zhǔn)評(píng)估寵物值類型與試題及答案
- 一年級(jí)語(yǔ)文日常交流試題及答案
- 解鎖古代文學(xué)史核心考點(diǎn)試題及答案
- 2024年非食品產(chǎn)品質(zhì)檢問(wèn)題試題及答案
- 語(yǔ)文綜合素養(yǎng)六年級(jí)試題及答案
- 2024年汽車美容師客戶滿意度測(cè)評(píng)試題及答案
- 遼寧省丹東市2025屆高三下學(xué)期3月總復(fù)習(xí)質(zhì)量測(cè)試(一)數(shù)學(xué) 含解析
- 汽車故障檢測(cè)設(shè)備使用常識(shí)試題及答案
- 廣西南寧市橫州市2023-2024學(xué)年八年級(jí)下學(xué)期期中英語(yǔ)試卷(含答案)
- 計(jì)量計(jì)價(jià)考試試題及答案
- 水果分選機(jī)設(shè)計(jì)說(shuō)明書(shū)
- 2024年江西省高考物理+化學(xué)+生物試卷(真題+答案)
- J22J255 河北省建筑圖集 被動(dòng)式超低能耗建筑節(jié)能構(gòu)造(六)(雙限位連接件現(xiàn)澆混凝土內(nèi)置保溫系統(tǒng)建筑構(gòu)造)DBJT02-208-2022
- 2024年01月安徽省池州市公安局2024年第一批公開(kāi)招考85名輔警筆試歷年典型考題及考點(diǎn)研判與答案解析
- 2024屆山東省濟(jì)南市萊蕪區(qū)中考數(shù)學(xué)模擬試題(一模)附答案
- 利器管制記錄表
- 2024年社區(qū)工作者考試必考1000題附完整答案(名師系列)
- 全國(guó)大唐杯大學(xué)生新一代信息通信技術(shù)大賽考試題庫(kù)(必練500題)
- 人工智能倫理與社會(huì)影響的討論
- T-CSGPC 016-2023 文物建筑健康監(jiān)測(cè)技術(shù)規(guī)范
- 高超聲速飛行器氣動(dòng)設(shè)計(jì)挑戰(zhàn)
評(píng)論
0/150
提交評(píng)論