版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.102.已知等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A. B. C. D.3.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn),則()A. B. C. D.4.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.35.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.56.已知邊長為4的菱形,,為的中點(diǎn),為平面內(nèi)一點(diǎn),若,則()A.16 B.14 C.12 D.87.已知六棱錐各頂點(diǎn)都在同一個球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.8.已知是第二象限的角,,則()A. B. C. D.9.秦九韶是我國南寧時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.10.設(shè),點(diǎn),,,,設(shè)對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.11.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④12.設(shè),分別是橢圓的左、右焦點(diǎn),過的直線交橢圓于,兩點(diǎn),且,,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正四棱柱的底面邊長為,側(cè)面的對角線長是,則這個正四棱柱的體積是____.14.已知函數(shù)的圖象在處的切線斜率為,則______.15.若x,y滿足,則的最小值為________.16.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.18.(12分)已知是各項都為正數(shù)的數(shù)列,其前項和為,且為與的等差中項.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項和.19.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機(jī)取出3個球(逐個有放回地抽?。媒Y(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?20.(12分)已知函數(shù)(是自然對數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個極值點(diǎn),且恒成立,求滿足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時對應(yīng)的自變量的值).21.(12分)已知橢圓C:(a>b>0)過點(diǎn)(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個不同點(diǎn)A,B,點(diǎn)M坐標(biāo)為(2,1),設(shè)直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.22.(10分)△ABC的內(nèi)角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點(diǎn)睛】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.2.D【解析】
根據(jù)等差數(shù)列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的計算,意在考查學(xué)生的計算能力.3.A【解析】
由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn),則,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)定義、二倍角公式,考查計算求解能力,屬于基礎(chǔ)題.4.C【解析】
先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗椤⒎謩e是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C。【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。5.D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點(diǎn)睛】本題考查了線性回歸方程過樣本中心點(diǎn)的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.6.B【解析】
取中點(diǎn),可確定;根據(jù)平面向量線性運(yùn)算和數(shù)量積的運(yùn)算法則可求得,利用可求得結(jié)果.【詳解】取中點(diǎn),連接,,,即.,,,則.故選:.【點(diǎn)睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運(yùn)算,關(guān)鍵是能夠?qū)⑺笙蛄窟M(jìn)行拆解,進(jìn)而利用平面向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解.7.D【解析】
由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.8.D【解析】
利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導(dǎo)公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識的綜合運(yùn)用能力;屬于中檔題.9.B【解析】
列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點(diǎn)睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎(chǔ)題.10.A【解析】
先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點(diǎn)睛】本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.11.D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.12.C【解析】
根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點(diǎn)睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】Aa設(shè)正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.14.【解析】
先對函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點(diǎn)睛】本題考查了根據(jù)曲線上在某點(diǎn)切線方程的斜率求參數(shù)的問題,屬于基礎(chǔ)題.15.5【解析】
先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點(diǎn),代入即得?!驹斀狻孔鞒霾坏仁浇M表示的平面區(qū)域,如圖,令,則,作出直線,平移直線,由圖可得,當(dāng)直線經(jīng)過C點(diǎn)時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點(diǎn)睛】本題考查不含參數(shù)的線性規(guī)劃問題,是基礎(chǔ)題。16.【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點(diǎn)作交于點(diǎn)由(1)易知兩兩垂直,以為原點(diǎn),射線分別為軸,軸,軸的正半軸,建立空間直角坐標(biāo)系.不妨設(shè),由,易知點(diǎn)的坐標(biāo)分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學(xué)計算能力,屬于中檔題.18.(1)證明見解析;(2).【解析】
(1)利用已知條件化簡出,當(dāng)時,,當(dāng)時,再利用進(jìn)行化簡,得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項公式,再化簡出,可直接求出的前100項和.【詳解】解:(1)由題意知,即,①當(dāng)時,由①式可得;又時,有,代入①式得,整理得,∴是首項為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項和.【點(diǎn)睛】本題考查數(shù)列遞推關(guān)系的應(yīng)用,通項公式的求法以及裂項相消法求和,考查分析解題能力和計算能力.19.(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數(shù)學(xué)期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因為,所以選擇方案二更為劃算.【點(diǎn)睛】本題考查了概率的計算,數(shù)學(xué)期望,意在考查學(xué)生的計算能力和應(yīng)用能力.20.(1);(2);(3).【解析】
(1)利用導(dǎo)數(shù)的幾何意義計算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導(dǎo)可得在上單調(diào)遞減,在上單調(diào)遞增,所以且,,,求出的范圍即可.【詳解】(1)因為,所以,當(dāng)時,,所以切線方程為,即.(2),.因為函數(shù)在區(qū)間上單調(diào)遞增,所以,且恒成立,即,所以,即,又,故,所以實數(shù)的取值范圍是.(3).因為函數(shù)在區(qū)間上有兩個極值點(diǎn),所以方程在上有兩不等實根,即.令,則,由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,解得且.又由,所以,且當(dāng)和時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,是極值點(diǎn),此時令,則,所以在上單調(diào)遞減,所以.因為恒成立,所以.若,取,則,所以.令,則,.當(dāng)時,;當(dāng)時,.所以,所以在上單調(diào)遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值點(diǎn),不等式恒成立等知識,是一道難題.21.(1)(2)k1+k2為定值0,見解析【解析】
(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年遠(yuǎn)洋船舶長期租賃合同版B版
- 2025年度離婚后房產(chǎn)過戶及補(bǔ)償協(xié)議書3篇
- 2024版高新技術(shù)項目投資合作框架合同版
- 2024年度智能指紋鎖采購及安裝服務(wù)合同3篇
- 2025年度智能城市建設(shè)規(guī)劃咨詢服務(wù)合同3篇
- 2024年百貨公司員工聘用協(xié)議
- 2024年美洲地區(qū)航空運(yùn)輸服務(wù)合同
- 2025年度新型節(jié)能玻璃安裝與維護(hù)一體化施工合同范本3篇
- 2024年葡萄采摘基地土地流轉(zhuǎn)與品牌推廣合作協(xié)議3篇
- 2024年檢驗類之臨床醫(yī)學(xué)檢驗技術(shù)(師)真題練習(xí)試卷A卷附答案
- 個人現(xiàn)實表現(xiàn)材料1500字德能勤績廉(通用6篇)
- 六年級上冊數(shù)學(xué)單元測試-5.圓 青島版 (含答案)
- 日本疾病診斷分組(DPC)定額支付方式課件
- 復(fù)旦大學(xué)用經(jīng)濟(jì)學(xué)智慧解讀中國課件03用大歷史觀看中國社會轉(zhuǎn)型
- (精心整理)高一語文期末模擬試題
- QC成果解決鋁合金模板混凝土氣泡、爛根難題
- 管線管廊布置設(shè)計規(guī)范
- 提升教練技術(shù)--回應(yīng)ppt課件
- 最新焊接工藝評定表格
- 精品洲際酒店集團(tuán)皇冠酒店設(shè)計標(biāo)準(zhǔn)手冊
- 農(nóng)副產(chǎn)品交易中心運(yùn)營方案
評論
0/150
提交評論