版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數列中,,,若(),則數列的最大值是()A. B.C.1 D.32.已知復數,則的虛部為()A.-1 B. C.1 D.3.設不等式組,表示的平面區(qū)域為,在區(qū)域內任取一點,則點的坐標滿足不等式的概率為A. B.C. D.4.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件5.設,,,則的大小關系是()A. B. C. D.6.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數7.函數的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③8.已知實數,則下列說法正確的是()A. B.C. D.9.下列函數中,圖象關于軸對稱的為()A. B.,C. D.10.已知向量,,則與的夾角為()A. B. C. D.11.已知向量,則向量在向量方向上的投影為()A. B. C. D.12.拋物線的焦點為,準線為,,是拋物線上的兩個動點,且滿足,設線段的中點在上的投影為,則的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若,則實數的取值范圍為__________.14.在的二項展開式中,所有項的系數之和為1024,則展開式常數項的值等于_______.15.已知平面向量與的夾角為,,,則________.16.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在世界讀書日期間,某地區(qū)調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮(zhèn)居民有100人,農村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮(zhèn)居民農村居民合計經常閱讀10030不經常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經常閱讀的人數為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818.(12分)如圖,在四棱錐中,側棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.19.(12分)已知在等比數列中,.(1)求數列的通項公式;(2)若,求數列前項的和.20.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經小島至對岸的水上通道(圖中粗線部分折線段,在右側),為保護小島,段設計成與圓相切.設.(1)試將通道的長表示成的函數,并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?21.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.22.(10分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是直線上的動點,當點到平面距離最大時,求面與面所成二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
在等差數列中,利用已知可求得通項公式,進而,借助函數的的單調性可知,當時,取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數,在時,單調遞減,且;在時,單調遞減,且.所以數列的最大值是,且,所以數列的最大值是3.故選:D.【點睛】本題考查等差數列的通項公式,考查數列與函數的關系,借助函數單調性研究數列最值問題,難度較易.2.A【解析】
分子分母同乘分母的共軛復數即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數的除法運算,考查學生運算能力,是一道容易題.3.A【解析】
畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內的面積,根據幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點,在區(qū)域內是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.4.A【解析】
首先利用二倍角正切公式由,求出,再根據充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A【點睛】本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應用是解決本題的關鍵,屬于基礎題.5.A【解析】
選取中間值和,利用對數函數,和指數函數的單調性即可求解.【詳解】因為對數函數在上單調遞增,所以,因為對數函數在上單調遞減,所以,因為指數函數在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數函數和指數函數的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、常考題型.6.D【解析】
當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.7.B【解析】
根據三角函數的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數的對稱軸、對稱中心,考查三角函數圖象變換,屬于基礎題.8.C【解析】
利用不等式性質可判斷,利用對數函數和指數函數的單調性判斷.【詳解】解:對于實數,,不成立對于不成立.對于.利用對數函數單調遞增性質,即可得出.對于指數函數單調遞減性質,因此不成立.故選:.【點睛】利用不等式性質比較大?。⒁獠坏仁叫再|成立的前提條件.解決此類問題除根據不等式的性質求解外,還經常采用特殊值驗證的方法.9.D【解析】
圖象關于軸對稱的函數為偶函數,用偶函數的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數為偶函數;A中,,,故為奇函數;B中,的定義域為,不關于原點對稱,故為非奇非偶函數;C中,由正弦函數性質可知,為奇函數;D中,且,,故為偶函數.故選:D.【點睛】本題考查判斷函數奇偶性.判斷函數奇偶性的兩種方法:(1)定義法:對于函數的定義域內任意一個都有,則函數是奇函數;都有,則函數是偶函數(2)圖象法:函數是奇(偶)函數函數圖象關于原點(軸)對稱.10.B【解析】
由已知向量的坐標,利用平面向量的夾角公式,直接可求出結果.【詳解】解:由題意得,設與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數量積求兩向量的夾角,注意向量夾角的范圍.11.A【解析】
投影即為,利用數量積運算即可得到結論.【詳解】設向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點睛】本題主要考察了向量的數量積運算,難度不大,屬于基礎題.12.B【解析】
試題分析:設在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質.【名師點晴】在直線與拋物線的位置關系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常常考慮用拋物線的定義進行問題的轉化.象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關系.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
畫圖分析可得函數是偶函數,且在上單調遞減,利用偶函數性質和單調性可解.【詳解】作出函數的圖如下所示,觀察可知,函數為偶函數,且在上單調遞增,在上單調遞減,故,故實數的取值范圍為.故答案為:【點睛】本題考查利用函數奇偶性及單調性解不等式.函數奇偶性的常用結論:(1)如果函數是偶函數,那么.(2)奇函數在兩個對稱的區(qū)間上具有相同的單調性;偶函數在兩個對稱的區(qū)間上具有相反的單調性.14.【解析】
利用展開式所有項系數的和得n=5,再利用二項式展開式的通項公式,求得展開式中的常數項.【詳解】因為的二項展開式中,所有項的系數之和為4n=1024,n=5,故的展開式的通項公式為Tr+1=C·35-r,令,解得r=4,可得常數項為T5=C·3=15,故填15.【點睛】本題主要考查了二項式定理的應用、二項式系數的性質,二項式展開式的通項公式,屬于中檔題.15.【解析】
根據已知求出,利用向量的運算律,求出即可.【詳解】由可得,則,所以.故答案為:【點睛】本題考查向量的模、向量的數量積運算,考查計算求解能力,屬于基礎題.16.1296【解析】
先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應用,考查了學生應用數學解決實際問題的能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析,有99%的把握認為經常閱讀與居民居住地有關.(2)【解析】
(1)根據題意填寫列聯(lián)表,利用公式求出,比較與6.635的大小得結論;(2)由樣本數據可得經常閱讀的人的概率是,則,根據二項分布的期望公式計算可得;【詳解】解:(1)由題意可得:城鎮(zhèn)居民農村居民合計經常閱讀10030130不經常閱讀403070合計14060200則,所以有99%的把握認為經常閱讀與居民居住地有關.(2)根據樣本估計,從該地區(qū)城鎮(zhèn)居民中隨機抽取1人,抽到經常閱讀的人的概率是,且,所以隨機變量的期望為.【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的數學期望的計算,考查運算求解能力,屬于基礎題.18.(1)證明見解析;(2)【解析】
(1)的中點,連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點建立空間坐標系,求出平面的法向量,計算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點,連接,,,分別是,的中點,,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點,以,,為坐標軸建立空間直角坐標系,則,0,,,0,,,2,,,0,,,2,,是的中點,是的三等分點,,1,,,,,,,,,0,,,2,,設平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計算,屬于中檔題.19.(1)(2)【解析】
(1)由基本量法,求出公比后可得通項公式;(2)求出,用裂項相消法求和.【詳解】解:(1)設等比數列的公比為又因為,所以解得(舍)或所以,即(2)據(1)求解知,,所以所以【點睛】本題考查求等比數列的通項公式,考查裂項相消法求和.解題方法是基本量法.基本量法是解決等差數列和等比數列的基本方法,務必掌握.20.(1),定義域是.(2)百萬【解析】
(1)以為原點,直線為軸建立如圖所示的直角坐標系,設,利用直線與圓相切得到,再代入這一關系中,即可得答案;(2)利用導數求函數的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標系.設,則,,.因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當時,,設銳角滿足,則,所以關于的函數是,定義域是.(2)要使建造此通道費用最少,只要通道的長度即最?。?,得,設銳角,滿足,得.列表:0減極小值增所以時,,所以建造此通道的最少費用至少為百萬元.【點睛】本題考查三角函數模型的實際應用、利用導數求函數的最小值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.21.(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結果;(2)在中,由余弦定理得,在中結合正弦定理求出,從而得出,即可得出的解析式,最后結合斜率的幾何意義,即可求出的最小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024融資租賃合同書之公寓租賃合同
- 2024年度監(jiān)理工程師職責履行合同
- 2024年中介參與下的二手房買賣定金合同
- 2024年度軟件開發(fā)與維護技術服務合同
- 2024年建筑工地瓦工承包合同
- 商品房購房合同協(xié)議書
- 技術合同 技術許可合同樣本
- 2024某大學人文社科科研項目合同書
- 2024借名購房合同協(xié)議范本
- 2024年離婚協(xié)議書格式要求
- 深度解讀強基計劃-被強基計劃課件
- 第五章肺孢子菌病課件
- 魏晉南北朝服飾課件
- 無機及分析化學考試題(附答案)
- 可可脂巧克力課件
- 交通連四方 杭州交通的發(fā)展課件
- 梨樹栽培技術 課件
- 第13講 教學設計的ASSURE模式(V5.1)公開課一等獎省優(yōu)質課大賽獲獎課件
- 三年級上冊美術課件-3.色彩的變化|贛美版 (共19張PPT)
- 理想與前途主題班會課件
- 顏色標準LAB值對照表
評論
0/150
提交評論