貴州省遵義市鳳岡縣二中2023屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第1頁
貴州省遵義市鳳岡縣二中2023屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第2頁
貴州省遵義市鳳岡縣二中2023屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第3頁
貴州省遵義市鳳岡縣二中2023屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第4頁
貴州省遵義市鳳岡縣二中2023屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,,則()A. B. C. D.2.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.3.已知中內(nèi)角所對應(yīng)的邊依次為,若,則的面積為()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為11,則圖中的判斷條件可以為()A. B. C. D.5.已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個零點,則實數(shù)a的取值范圍是()A. B. C. D.6.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.7.體育教師指導4個學生訓練轉(zhuǎn)身動作,預(yù)備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉(zhuǎn)”,若4個學生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.68.設(shè),點,,,,設(shè)對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.9.已知,則()A. B. C. D.10.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績?nèi)鐖D所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人11.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.12.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),則的值為______.14.在長方體中,,,,為的中點,則點到平面的距離是______.15.已知函數(shù),若,則___________.16.的二項展開式中,含項的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂?;(ⅱ)若,求的數(shù)學期望的最大值.18.(12分)已知,,分別是三個內(nèi)角,,的對邊,.(1)求;(2)若,,求,.19.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學參加該環(huán)節(jié)的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數(shù),求隨機變量X的分布列和數(shù)學期望.20.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.21.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構(gòu)成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.22.(10分)已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設(shè)點,直線與曲線交于兩點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

令,求,利用導數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調(diào)遞增:∴,當,設(shè),,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.2、B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.3、A【解析】

由余弦定理可得,結(jié)合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點睛】本題考查利用余弦定理解三角形,考查學生的基本計算能力,是一道容易題.4、B【解析】

根據(jù)程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結(jié)束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.5、A【解析】

根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個不同的交點,利用數(shù)形結(jié)合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數(shù)和的圖象如圖,當a=1時,與有無數(shù)多個交點,當直線經(jīng)過點時,即,時,與有兩個交點,當直線經(jīng)過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.6、C【解析】

設(shè)出兩人到達小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設(shè)小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學運算能力.7、B【解析】

通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過列舉的方法直觀感受,屬于基礎(chǔ)題.8、A【解析】

先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點睛】本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.9、B【解析】

利用誘導公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.10、D【解析】

根據(jù)題意分別計算出物理等級為,化學等級為的學生人數(shù)以及物理等級為,化學等級為的學生人數(shù),結(jié)合表格中的數(shù)據(jù)進行分析,可得出合適的選項.【詳解】根據(jù)題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數(shù)最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.11、A【解析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當,,退出循環(huán),輸出結(jié)果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點睛】該題考查的是有關(guān)程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.12、A【解析】

利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,由函數(shù)的解析式求出的值,進而計算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點睛】本題考查分段函數(shù)的性質(zhì)、對數(shù)運算法則的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.14、【解析】

利用等體積法求解點到平面的距離【詳解】由題在長方體中,,,所以,所以,設(shè)點到平面的距離為,解得故答案為:【點睛】此題考查求點到平面的距離,通過在三棱錐中利用等體積法求解,關(guān)鍵在于合理變換三棱錐的頂點.15、【解析】

根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因為函數(shù),其定義域為,所以其定義域關(guān)于原點對稱,又,所以函數(shù)為奇函數(shù),因為,所以.故答案為:【點睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、常考題型.16、【解析】

寫出二項展開式的通項,然后取的指數(shù)為求得的值,則項的系數(shù)可求得.【詳解】,由,可得.含項的系數(shù)為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)0.288(Ⅱ)(?。┮娊馕觯áⅲ?shù)學期望的最大值為280【解析】

(Ⅰ)根據(jù)題意,設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結(jié)果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學期望,結(jié)合,即可算出的最大值.【詳解】解:(Ⅰ)設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數(shù)學期望的最大值為280.【點睛】本題考查獨立重復事件和二項分布的應(yīng)用,以及離散型分布列和數(shù)學期望,考查計算能力.18、(1);(2),或,.【解析】

(1)利用正弦定理,轉(zhuǎn)化原式為,結(jié)合,可得,即得解;(2)由余弦定理,結(jié)合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得.因為,所以,代入上式并化簡得.由于,所以.又,故.(2)因為,,,由余弦定理得即,所以.而,所以,為一元二次方程的兩根.所以,或,.【點睛】本題考查了正弦定理,余弦定理的綜合應(yīng)用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.19、(1);(2)分布列見解析,期望為.【解析】

(1)甲同學至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【詳解】(1)令“甲同學至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【點睛】本題考查古典概型,考查隨機變量的概率分布列和數(shù)學期望.解題關(guān)鍵是掌握相互獨立事件同時發(fā)生的概率計算公式.20、(1).(2).【解析】

(1)根據(jù)題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據(jù)為銳角三角形,求得,利用三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.【點睛】本題主要考查了利用正弦定理和三角函數(shù)的恒等變換求解三角形問題,對于解三角形問題,通常利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論