




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2020年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)二試題
一、選擇題:1~8小題,每小題4分,共32分.下列每題給出的四個(gè)選項(xiàng)中,只有一個(gè)選
項(xiàng)符合題目要求,請(qǐng)將所選選項(xiàng)前的字母填在答題紙指定的位置上.
(1)當(dāng)x0+下列無窮小的階數(shù)最高的是().
x2x
t3
(A)(e1)dt(B)ln1tdt
00
sinx1cosx
(C)2(D)3
sintdt0sintdt
0
【答案】(D)
2
xt2
解析:(A)((e1)dt)'ex1x2(x0)
0
x3
3'32
(B)(ln(1tdt)ln(1x)x(x0)
0
sinx
2'22
(C)(sintdt)sin(sinx)cosxx(x0)
0
1cosx
3'
(D).(sintdt)sin3(1cosx)sinxcx4(x0)
0
1
x1
eln1x的第二類間斷點(diǎn)個(gè)數(shù)為().
(2)函數(shù)fx
ex1x2
(A)1(B)2(C)3(D)4
【答案】(C)
解析:間斷點(diǎn)為x1,0,1,2
limfx為無窮間斷點(diǎn),
x1
1
limfx為可去間斷點(diǎn)
x02e
limfx為無窮間斷點(diǎn),
x1
limfx為無窮間斷點(diǎn),
x2
1arcsinx
(3)dx()
0
x1x
22
(A)(B)(C)(D)
4848
【答案】(A)
2
212
1
1arcsinx
解析:dx2arcsinxdarcsinx=arcsinx==
0x1x0024
n
(4)函數(shù)fxx2ln1x,當(dāng)n3時(shí),f0().
n!
(A)(B)(C)
n2nn
!
n
2
2
2
!!
(D)n
n
【答案】(A)
nn21n12n2
解析:fxln1xxnCln1x2xnCln1x2
n2n2n3nn!
f0Cnln1x2x0nn111n3!
n2
xy,xy0
,給出下列結(jié)論
(5)對(duì)函數(shù)fx,yx,y0
y,x0
f2f
①0,01③lim
0,01fx,y0④limlimfx,y0
x②xyx,y0,0y0x0
則正確的個(gè)數(shù)為().
(A)4(B)3(C)2(D)1
【答案】(B)
f(x,0)f(0,0)x0
解析:flimlim1,①對(duì);
0,0
xx0x0x0x0
limfx,ylimxy0,則limlimfx,y0,③與④對(duì);
x,y0,0x,y0,0y0x0
2f(0,y)f(0,0)f(0,y)1
flimxxlimx1,②錯(cuò).
0,0
xyy0y0y0y
于是正確的個(gè)數(shù)為3個(gè).
(6)函數(shù)fx在2,2上可導(dǎo),且fxfx0,則().
21
(A)ff1(B)f0
f
f12f23
(C)e(D)e
1ff1
e1
【答案】(B)
fxfxx
解析:因?yàn)閒xfx0,所以,所以110,記Fxefx,
fxfx
則Fx0,F(xiàn)0f0,F1ef1,因?yàn)镕x單調(diào)增,所以F0F1,
f0
即f0ef1,即e
f1
(7)已知四階矩陣Aaij不可逆,a12的代數(shù)余子式A120,1,2,3,4為矩陣A的列向量
組,A*為A的伴隨矩陣,則方程組A*x0的通解為().
(A)xk11k22k33,其中k1、k2、k3為任意常數(shù)
(B)xk11k22k34,其中k1、k2、k3為任意常數(shù)
(C)xk11k23k34,其中k1、k2、k3為任意常數(shù)
(D)xk12k23k34,其中k1、k2、k3為任意常數(shù)
【答案】(C)
ArAA
解析:因?yàn)椴豢赡?,所?,又因?yàn)?20,所以rA3,所以
rA=3,rA=1,又因?yàn)?2A0,所以1,3,4線性無關(guān),又因?yàn)锳AO,所以
A*x0的通解xkkk,其中k、k、k為任意常數(shù).
112334123
(8)設(shè)A為三階矩陣,1,2為矩陣A的屬于特征值1的兩個(gè)線性無關(guān)的特征向量,3為
100
矩陣A的屬于特征值1的特征向量,則使得P1AP010的可逆矩陣P為().
001
(A)13,2,3(B)12,2,3
(C)13,3,2(D)12,3,2
【答案】(D)
AA
解析:由題知1=1,A2=2,A3=3,所以(1+2)=1+2,A(3)=3,
100
1
令P,,,則PAP010.
1232
001
二、填空題:9~14題,每小題4分,共24分,請(qǐng)將答案寫在答題紙指定的位置上.
2
xt1d2yˇ
(9)設(shè),則.
2
2dx
yln(tt1)t1
答案:應(yīng)填2.
dy1t
(1)
dytˇt21t211
dt
解析:,
dxdxtt
dtt21
11
2dd1122
dydtt1dy
ttˇ,則2.
dx2dxdtdxt2tt3dx2
t1
t21
11ˇ
(10)dyx31dx.
0y
2
答案:應(yīng)填(221).
9
解析:交換積分次序得,
1
111x223
33
dyx1dxdxx1dyxx1dx
0y000
11332
x1d(x1)(221).
0
39ˇ
(11)設(shè)zarctan(xysin(xy)),則dz.
(0,)
答案:應(yīng)填(1)dxdy.
ydxxdycos(xy)(dxdy)
解析:dzdarctan(xysin(xy))ˇ,
1(xysin(xy))2
則dz(1)dxdy.
(0,)
(12)斜邊為2a的等腰直角三角形平板鉛直地沉浸在水中,斜邊與水平面齊平,重力加
速度為g,水的密度為,則該平板一側(cè)受到的水壓力為.
13
答案:應(yīng)填ga.
3
aa13
解析:水壓力為Fg(ay)2ydy2g(ay)ydyga.
003
(13)設(shè)yy(x)滿足y2yy0,且y(0)0,y(0)1,則y(x)dx.
0
答案:應(yīng)填1.
解析:y2yy0的特征方程為r22r10,則r1為二重根,微分方程的
x
通解為y(CCx)e.
12
x
y(0)0y(0)1C0C1yxey(x)dxxexdx1.
由,得,,則,
1200
a011
0a11
(14)行列式
11a0
42
答案:應(yīng)填a14a.10a
aaaa
11111111
0142
a110a110a1a4a
解析:原式=aa
11a011a002a11
110a110a021a1
三、解答題:15~23小題,共94分,請(qǐng)將解答寫在答題紙指定的位置上.解答應(yīng)寫出文字
說明、證明過程或演算步驟.
(15)(本題滿分10分)
x1x
求曲線yx(x0)的斜漸近線.
1x
解析:只考慮x0的情形
x
yxx
x1
klimlim
limx,
xx
xx(1x)1xe
1x1xxex1xx(1x)x
blimyxlimlim
xx
xx
ex(1x)ee(1x)
xxx
1x1xln11xln
1x
limxe1limxee1limxe1x
1
xexex
e1x
1
1xln11
1x1111ln1
limx1xlnlimxlimt1t
ex1xex1et0t
x
1tln(1t)1
lim,
2
et0t2e
11
于是,曲線的斜漸近線方程為yˇx.
e2e
(16)(本題滿分10分)
fx1
已知函數(shù)fx連續(xù),且lim1,gxfxtdt,求gx,并證明gx在
x0x0
x0連續(xù).
uxt11xfx
解析:x0時(shí),1fxtdtxfudu,gxfudu,
當(dāng)gx0x0
x20x
當(dāng)x0時(shí)
1x
fudu0fudu
x
gxg00
x0fx1
g0limlimlimlim,
2x
x0xx0fxxx0x02x2
11fudu,x0
20
gxxx
所以1,
,x0
2
1fx1
limgxlim[fudu1=g0
1fx11fx
]limˇfudulim=lim
x0x0x20xx0x20x0xx02x2
所以gx在x0連續(xù).
(17)(本題滿分10分)
求函數(shù)f(x,y)x38y3xy的極值.
f2
x3xy011
解析:令得駐點(diǎn)(0,0),,
ˇf
24y2x0612
y
2
f2f2f
且26x,1,48y.
xxyy2
22
(x,y)2fffACB2極值
ABC
x2xyy2
0100
(0,0)無
111140極小
,
612
11111
故f(x,y)在6,12處取得極小值且極小值f6,12216
.
(18)(本題滿分10分)21
x22x
設(shè)函數(shù)fx的定義域?yàn)椋?,+)且滿足2fxxf,求fx,并
x1x2
13
求曲線yfx,y,y及y軸所圍圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積.
22
121
111t2tt2
解析:令x,得2f()f(t),即
2
ttt11t2
1
t2
22
212tt212xx
2tf()f(t),即2xf()f(x),
t1t2x1x2
2
21x2xx
與題中的2fxxf聯(lián)立得,f(x),
x11x2
x2
133
由yf(x),得x,由y得x3.
232
32123x123
2
體積為V()3()33(1x)dx(2)(3)
223
3
2
3(23)3.
23666
(19)(本題滿分10分)
x2y2
設(shè)平面區(qū)域D由直線x1,x2,yx與x軸所圍,計(jì)算dxdy.
Dx
x2y2
解析:令I(lǐng)dxdy
Dx
12
4dcosrdr
01
cosˇcosˇ
2
2
1rcosˇ
4()dˇ
0
cosˇ21
cosˇ
31
4d
3ˇ
20cosˇ
3
4secdtanˇ
0
2
ˇ
332
secˇtan4ˇ4tansecdˇ
2020
32ˇ3
4(sec21)
22secd0
ˇ
32ˇ333
4sec4secdˇ
220
02
334
2Iln(sectan)
220
33
2Iln(21)
22
3
I[2ln(1ˇ2)]
4
(20)(本題滿分11分)設(shè)
x2
函數(shù)f(x)t
e1dt;
2
(1)證明:存在(1,2),使得f()(2)e.
2
(2)證明:存在(1,2),使得f(2)ln2e.
證明:(1)令F(x)(2x)f(x),由題意f(1)0,F(1)0,F(2)0
因?yàn)镕(x)在1,2上連續(xù),在1,2可導(dǎo),所以由羅爾定理可知(1,2)使F()0,即
2
f()(2)e
(2)令g(x)lnx,f(x),g(x)在1,2上連續(xù),在1,2可導(dǎo),且g(x)0,所以由柯西中
f()f(2)f(1)2
值定理可知存在(1,2),使得,即f(2)ln2e.
g()g(2)g(1)
(21)(本題滿分11分)
設(shè)函數(shù)f(x)可導(dǎo),且f(x)0,曲線yf(x)(x0)經(jīng)過坐標(biāo)原點(diǎn),其上任意一
點(diǎn)M處的切線與x軸交于T,又MP垂直x軸于點(diǎn)P,已知曲線yf(x),直線MP以
及x軸所圍圖形的面積與三角形MPT面積之比恒為3:2,求滿足上述條件的曲線方程.
解析:設(shè)所求曲線方程為yy(x),任一點(diǎn)M坐標(biāo)為(x,y),
由題意得MPy
tany,即TP,
TPy
三角形MPT的面積為
1
1yy2
SMPTPy,
22y2y
x
曲邊三角形OMP的面積Sy(x)dx,
0
2
y2x
由兩面積之比為常數(shù)得y(x)dx,
2y30
2
兩邊關(guān)于求導(dǎo)得2yy2,
2yyyyy4y(x),即
xy
y233
dp
令p(y)y,則yp,
dy
dp2dp2
原方程化為ypp2,即p[yp]0。
dy3dy3
由p0得yC,這是原方程的一個(gè)解但不合題意舍去。
2
dp22
p0,得3y3
由ypC1y,即Cy,
dy31
1
y3
從而CxC,
121
3
由曲線過原點(diǎn),得y0,代入得C20.
x0
11
3Cx,
所求曲線為y31
由C的任意性,曲線可表示為yCx3,C為任意常數(shù).
1
(22)(本題滿分11分)
求二次型f(x,x,x)x2x2x22axx2axx2axx經(jīng)可逆線性變換
123123122313
x1y1
222
xPy化為二次型g(y,y,y)yy4y2yy,
2212312312
xy
33
(1)求a;
(2)求可逆矩陣P.
1aa110
解析:(1)設(shè)Aa1a,B110,由題意可得,r(A)r(B),而r(B)2,
aa1004
1
則r(A)2,于是可得a.
2
(2)對(duì)于二次型f,
f(x,x,x)x2x2x2xxxxxx
123123122313
11333
(xxx)222xx
12223x+x223
1134243
(xxx)2(xx)2
12223423
11
zxxxxzzz
1111
112223113233
322
令z(xx),即x2zz,得fzz,取P021,
223223121
233
z3x3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45215-2025危險(xiǎn)貨物自反應(yīng)物質(zhì)和有機(jī)過氧化物引爆試驗(yàn)方法
- 停放車輛服務(wù)合同范本
- 加盟投資協(xié)議合同范本
- 住房購(gòu)房合同范例
- 勞務(wù)家政合同范本
- 儀器安裝服務(wù)合同范本
- 修路挖機(jī)合同范本
- 臨時(shí)增項(xiàng)合同范本
- 北京公司擔(dān)保合同范本
- 做樓房施工合同范本
- 新湘教(湖南美術(shù))版小學(xué)美術(shù)五年級(jí)下冊(cè)全冊(cè)PPT課件(精心整理匯編)
- 家譜樹形圖模板
- 工程交付培訓(xùn)記錄表
- 大智慧指標(biāo)公式函數(shù)大全(完整可打印版)
- 髖膝關(guān)節(jié)置換術(shù)后X線評(píng)價(jià)-PPT課件
- 蓋梁抱箍法施工計(jì)算書蓋梁抱箍法施工方案
- (完整版)涼亭施工方案
- 《中國(guó)近現(xiàn)代史綱要》上編教學(xué)案例分享
- 新加坡環(huán)境治理與保護(hù)
- 常用消防圖例
- 生物安全手冊(cè)(共39頁)
評(píng)論
0/150
提交評(píng)論