插值法與數(shù)值微分_第1頁
插值法與數(shù)值微分_第2頁
插值法與數(shù)值微分_第3頁
插值法與數(shù)值微分_第4頁
插值法與數(shù)值微分_第5頁
已閱讀5頁,還剩73頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

關(guān)于插值法與數(shù)值微分第1頁,共78頁,2023年,2月20日,星期四引言

插值法在工程及建筑設(shè)計中應(yīng)用十分廣泛。例如,已知一天24小時的逐時室外氣溫、綜合溫度、冷熱負(fù)荷等值,需要知道其他任意時刻的值,即可應(yīng)用插值計算求得;又如,我國工業(yè)企業(yè)采取通風(fēng)和空氣調(diào)節(jié)設(shè)計規(guī)范中,僅給出了有限個地區(qū)相應(yīng)有限個方位的夏季太陽輻射熱總強(qiáng)度值,以及透過窗玻璃的太陽總輻射強(qiáng)度值,至于其它任意方位(0-350)的中間值,也要用插值法求得。因此,插值法的研究很有必要。

實際中,f(x)多樣,復(fù)雜,通常只能觀測到一些離散數(shù)據(jù);或者f(x)過于復(fù)雜而難以運算。這時我們要用近似函數(shù)g(x)來逼近f(x)。這個過程就是曲線擬合。第2頁,共78頁,2023年,2月20日,星期四常用曲線擬合方法:插值法、最小二乘法

自然地,希望g(x)通過所有的離散點x0x1x2x3x4xg(x)

f(x)本章學(xué)習(xí)插值法曲線擬合的幾何意義第3頁,共78頁,2023年,2月20日,星期四第4頁,共78頁,2023年,2月20日,星期四插值函數(shù)的幾何意義yx第5頁,共78頁,2023年,2月20日,星期四§2-1線性插值和拋物插值一、線性插值yxy=??(??)圖2-1第6頁,共78頁,2023年,2月20日,星期四優(yōu)點:計算簡單,以直線代替曲線。缺點:精度低,誤差大。改進(jìn):多用一些點。第7頁,共78頁,2023年,2月20日,星期四【例】已知某多葉調(diào)節(jié)風(fēng)閥。當(dāng)葉片數(shù)為n=3時,葉片與氣流方向呈各種角度α?xí)r。某局部阻力系數(shù)β值如下表表示:求當(dāng)α等于30°時,多葉調(diào)節(jié)風(fēng)閥的局部阻力系數(shù)β的線形插值。并將其代入線性插值公式,有第8頁,共78頁,2023年,2月20日,星期四幾何意義:通過三點A、B、C的拋物線代替曲線其中為待定常數(shù)。若將A,B,C三點分別代入上式會得到一個有唯一解的三元一次方程,從而即可確定,但求起來比較麻煩。第9頁,共78頁,2023年,2月20日,星期四簡便算法:見下一頁第10頁,共78頁,2023年,2月20日,星期四拋物插值公式:(二次插值公式)稍加整理即得拋物插值公式。第11頁,共78頁,2023年,2月20日,星期四【例3】分別計算下列各題:

1)利用100和121求平方根115;

2)利用100,121和144求平方根115。

解:用線形插值求解問題1)與所求平方根的實際值10.72387比較,得到了具有三位有效數(shù)字的結(jié)果10.71428。第12頁,共78頁,2023年,2月20日,星期四用拋物插值求解問題2)與平方根實際值10.7238比較,10.72275551具有四位有效數(shù)字,顯然比線形插值的結(jié)果好。一般地說,拋物插值比線形插值近似程度要好些。第13頁,共78頁,2023年,2月20日,星期四一、拉格朗日插值公式:問題提出:這節(jié)就具有一般形式的代數(shù)插值問題(即已知函數(shù)在n+1個點上的函數(shù)值求一個n次多項式,并滿足條件,)來討論如何構(gòu)造其插值多項式?!?-2拉格朗日插值多項式第14頁,共78頁,2023年,2月20日,星期四第15頁,共78頁,2023年,2月20日,星期四第16頁,共78頁,2023年,2月20日,星期四這就是所要求的插值多項式,稱為拉格朗日(Lagrange)插值多項式。當(dāng)n=1時,就得出線形插值多項式,

n=2時,就得出拋物插值多項式。第17頁,共78頁,2023年,2月20日,星期四二、拉格朗日插值余項:插值余項:定理:第18頁,共78頁,2023年,2月20日,星期四證明:當(dāng)X為節(jié)點時,兩邊皆為0,顯然成立。下設(shè)X不為節(jié)點。作輔助函數(shù)第19頁,共78頁,2023年,2月20日,星期四即問題得證。這個定理所講的余項用起來有一定的困難

,因為實際計算時,只是給出的一張數(shù)據(jù)表,并未給出具體的解析式子,故并不知道,所以也就無法得到。第20頁,共78頁,2023年,2月20日,星期四第21頁,共78頁,2023年,2月20日,星期四【例4】在例3中分別用線性插值和拋物插值計算了的近似值,試估計它們的截斷誤差。第22頁,共78頁,2023年,2月20日,星期四第23頁,共78頁,2023年,2月20日,星期四第24頁,共78頁,2023年,2月20日,星期四解:記由插值多項式有故根據(jù)余項公式,若能估計出的上界,那么將有第25頁,共78頁,2023年,2月20日,星期四三、插值誤差的事后估計法第26頁,共78頁,2023年,2月20日,星期四利用余項公式知:第27頁,共78頁,2023年,2月20日,星期四稍加整理得:這種用計算的結(jié)果來估計誤差的辦法,通常稱為事后估計,在計算中是常用的,這種估計誤差的方法,將貫穿我們計算方法這門課程的始終。

第28頁,共78頁,2023年,2月20日,星期四四、拉格朗日插值多項式的優(yōu)缺點:優(yōu)點:拉格朗日插值多項式結(jié)構(gòu)對稱,使用方便

缺點:a.不具備遞推性,當(dāng)需要增加節(jié)點時需要重新計算;b.龍格(Runge)現(xiàn)象:高次拉格朗日插值多項式穩(wěn)定性差,對于計算過程的舍入誤差十分敏感,當(dāng)插值節(jié)點增多時,不能保證非節(jié)點處的插值精度得到改善,有時反而誤差更大。龍格就給出了一個例子:設(shè)被插值函數(shù)第29頁,共78頁,2023年,2月20日,星期四取等矩節(jié)點,作拉格朗日插值多項式。當(dāng)n=10時,函數(shù)及插值多項式的圖形如下所示。由圖可見,在區(qū)間[-0.2,0.2]上比較接近,但在區(qū)間[-1,1]兩端則誤差很大。當(dāng)n增大時,部分區(qū)間上插值多項式截斷誤差偏大的現(xiàn)象更重。這種現(xiàn)象稱龍格現(xiàn)象。-11x0.51.01.5y0龍格現(xiàn)象*為避免龍格現(xiàn)象和不穩(wěn)定,通常限定n≤7,不采用高次插值多項式。第30頁,共78頁,2023年,2月20日,星期四§2-3分段插值法問題提出:適當(dāng)提高插值多項式的次數(shù),可以提高計算的精確度,但次數(shù)太高又會產(chǎn)生不好的效果。因為次數(shù)越高,計算越繁,積累誤差就越大;曲線就會出現(xiàn)過多的扭擺。當(dāng)局部插值點有微小變動時,就可能引起曲線大幅度的變化,使計算很不穩(wěn)定。因此,插值多項式次數(shù)越高,其所求得的插值越顯得不可靠,從而也大大降低了它的工程應(yīng)用價值。這也就是很少采用拉格朗日插值公式的原因。因此,在工程應(yīng)用中,多采用分段插值法。即將插值區(qū)間分為若干個小段,在每一小段上使用低階插值——如線形插值或拋物插值。

設(shè)已給出一系列離散結(jié)點:應(yīng)用低階插值的關(guān)鍵是恰當(dāng)?shù)靥暨x插值結(jié)點。余項公式說明,選取的結(jié)點離插值點越近,誤差就越小,因而插值效果也就越好。因此應(yīng)當(dāng)盡量在插值點的鄰近選取插值結(jié)點。第31頁,共78頁,2023年,2月20日,星期四一、分段線性插值這種分段低次插值叫做分段線性插值。在幾何上就是用折線代替曲線,故分段線性插值又稱折線插值。第32頁,共78頁,2023年,2月20日,星期四000(i=1,2,···,n-1)第33頁,共78頁,2023年,2月20日,星期四二、分段拋物插值以三個節(jié)點為例,公式為:第34頁,共78頁,2023年,2月20日,星期四其節(jié)點的選取方法為:-----------式(2.13)式(2.13)稱為分段拋物插值公式。第35頁,共78頁,2023年,2月20日,星期四解:在各節(jié)點的函數(shù)值為由此求出分段線性插值基函數(shù):第36頁,共78頁,2023年,2月20日,星期四故有第37頁,共78頁,2023年,2月20日,星期四§2-4牛頓插值多項式對于n+1個節(jié)點的插值問題,將n次插值多項式寫成如下形式多項式稱為牛頓(Newton)插值多項式.形如上式的插值為待定系數(shù).第38頁,共78頁,2023年,2月20日,星期四第39頁,共78頁,2023年,2月20日,星期四一、向前差分與牛頓向前插值公式第40頁,共78頁,2023年,2月20日,星期四差分表第41頁,共78頁,2023年,2月20日,星期四將其代入牛頓插值公式,得牛頓向前插值公式,簡稱前插公式。第42頁,共78頁,2023年,2月20日,星期四----------表2.3第43頁,共78頁,2023年,2月20日,星期四第44頁,共78頁,2023年,2月20日,星期四用二次插值得用三次插值得第45頁,共78頁,2023年,2月20日,星期四第46頁,共78頁,2023年,2月20日,星期四二、向后差分與牛頓向前后插值公式第47頁,共78頁,2023年,2月20日,星期四【例10】已知函數(shù)表同例9,計算sin(0.58),并估計截斷誤差.因三階向后差分接近于常數(shù),故用三次插值進(jìn)行計算,且于是由后插公式得第48頁,共78頁,2023年,2月20日,星期四第49頁,共78頁,2023年,2月20日,星期四定義1記稱為關(guān)于xi

的零階均差.稱為關(guān)于xi

,xi+1的一階均差.稱為二階均差.三、差商與牛頓基本插值多項式第50頁,共78頁,2023年,2月20日,星期四一般地,k階均差為均差有如下基本性質(zhì):定理1:(1)均差與函數(shù)值的關(guān)系為(2)均差與節(jié)點的排列順序無關(guān),即第51頁,共78頁,2023年,2月20日,星期四(4)若函數(shù)在上存在n階導(dǎo)數(shù),且節(jié)點則使得第52頁,共78頁,2023年,2月20日,星期四53三、均差的計算方法(表格法):規(guī)定函數(shù)值為零階均差均差表第53頁,共78頁,2023年,2月20日,星期四解:先構(gòu)造差商表如表2-5所示。由表可以看出牛頓基本插值多項式中各系數(shù)為表2.5第54頁,共78頁,2023年,2月20日,星期四故用線性插值所得的近似值為用拋物插值所得的近似值為第55頁,共78頁,2023年,2月20日,星期四§2-5三次樣條插值

樣條這一名詞來源于工程中的樣條曲線,繪圖員為了將一些指定點(稱作樣點)鏈接成一條光滑曲線,往往用細(xì)長的木條(稱作繪圖員的樣條)把相近的幾點連接在一起,再逐步延伸連接起全部指定點,使形成一條光滑的樣條曲線,它在連接點處具有連續(xù)曲率,我們對繪圖員的樣條曲線進(jìn)行數(shù)學(xué)模擬,得出的函數(shù)叫做樣條函數(shù),它在連接處具有一階和二階連續(xù)微商。第56頁,共78頁,2023年,2月20日,星期四一、三次樣條插值函數(shù)的定義定義:------(1)第57頁,共78頁,2023年,2月20日,星期四二、邊界條件問題的提出與類型------(2)第58頁,共78頁,2023年,2月20日,星期四------(3)------(4)第59頁,共78頁,2023年,2月20日,星期四并且我們不能只對插值函數(shù)在中間節(jié)點的狀態(tài)進(jìn)行限制也要對插值多項式在兩端點的狀態(tài)加以要求也就是所謂的邊界條件:第一類(一階)邊界條件:第二類(二階)邊界條件:第三類(周期)邊界條件:少兩個條件------(6)------(5)------(7)第60頁,共78頁,2023年,2月20日,星期四加上任何一類邊界條件(至少兩個)后一般使用第一、二類邊界條件,即------(8)或常用第二類邊界條件第61頁,共78頁,2023年,2月20日,星期四------(9)第62頁,共78頁,2023年,2月20日,星期四加以整理后可得------(10)------(11)第63頁,共78頁,2023年,2月20日,星期四由條件由于以上兩式相等,得第64頁,共78頁,2023年,2月20日,星期四------(12)第65頁,共78頁,2023年,2月20日,星期四如果問題要求滿足第一類(一階)邊界條件:------(5)基本方程組(12)化為n-1階方程組------(13)即將(13)式化為矩陣形式第66頁,共78頁,2023年,2月20日,星期四------(14)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論