等比數(shù)列前n項(xiàng)和公式的推導(dǎo)和運(yùn)算_第1頁
等比數(shù)列前n項(xiàng)和公式的推導(dǎo)和運(yùn)算_第2頁
等比數(shù)列前n項(xiàng)和公式的推導(dǎo)和運(yùn)算_第3頁
等比數(shù)列前n項(xiàng)和公式的推導(dǎo)和運(yùn)算_第4頁
等比數(shù)列前n項(xiàng)和公式的推導(dǎo)和運(yùn)算_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2.5等比數(shù)列前n項(xiàng)和復(fù)習(xí):等比數(shù)列{an}an+1an=q(定值)

(1)

等比數(shù)列:(2)

通項(xiàng)公式:an=a1?qn-1(3)

重要性質(zhì):n-man=am?qm+n=p+qan?aq?am=ap注:以上m,n,p,q均為自然數(shù)這兩個重要性質(zhì)的變化.應(yīng)用可大哩!你掌握了嗎?國際象棋起源于古代印度,關(guān)于國際象棋有這樣一個傳說。國王要獎賞國際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請?jiān)谄灞P的第一個格子里放上1粒麥子,在第2個格子里放上2粒麥子,在第3個格子里放上4粒麥子,在第4個格子里放上8粒麥子,依此類推,每個格子里放的麥子數(shù)都是前一個格子里放的麥子數(shù)的2倍,直到第64個格子。請給我足夠的糧食來實(shí)現(xiàn)上述要求?!蹦阏J(rèn)為國王有能力滿足發(fā)明者上述要求嗎?由于每個格子里的麥子數(shù)都是前一個格子里的麥子數(shù)的2倍,且共有64個格子,所以各個格子里的麥粒數(shù)依次是:1,2,22,23,…,263一、導(dǎo)入新課:探究等差數(shù)列的前n項(xiàng)和

它能用首項(xiàng)和末項(xiàng)表示,那么對于是否也能用首項(xiàng)和末項(xiàng)表示?如果可以用首項(xiàng)和末項(xiàng)表示,那我們該怎么辦呢?~~~~~~~~~~~消去中間項(xiàng)能否找到一個式子與原式相減能消去中間項(xiàng)?倒序相加法求等差數(shù)列的前n項(xiàng)和用了即兩式相加而得對于式子是否也能用倒序相加法呢??2①②由①-②得,即因此,建筑隊(duì)隊(duì)長最好不要同意這樣的條件,否則會虧大的.

兩邊同時乘以2,對于一般的等比數(shù)列我們又將怎樣求得它的前n項(xiàng)和呢?兩邊同時乘以為設(shè)為等比數(shù)列,為首項(xiàng),為公比,它的前n項(xiàng)和③錯位相減4由③-得

4分類討論當(dāng)時,當(dāng)時,?即是一個常數(shù)列等比數(shù)列的通項(xiàng)公式例1求等比數(shù)列的前8項(xiàng)的和.

解由題意知,代入公式對公式中的知三個能求一.等比數(shù)列前n項(xiàng)求和公式通項(xiàng)公式:an=a1?qn-1Sn=na1(1-q){1-q(q=1)(q=1)n·a1等比數(shù)列{an}Sn=

a1-anq{1-q(q=1)(q=1)n·a1a1qna1?qqn-1?anq去看看練習(xí)吧!(2)求等比數(shù)列…第5項(xiàng)到第10項(xiàng)之和?因?yàn)閯t所以方法一:方法二:因?yàn)橛兴缘缺葦?shù)列的通項(xiàng)公式

可將原數(shù)列的第5項(xiàng)看做新數(shù)列的第1項(xiàng),第10項(xiàng)之和看做第6項(xiàng),新數(shù)列的公比仍為則原題的所求的即為新數(shù)列的前6項(xiàng)之和,記作(構(gòu)造新數(shù)列)則方法三:因?yàn)樗?與方法二構(gòu)造數(shù)列)則有例1、求下列等比數(shù)列前8項(xiàng)的和說明:2.1.解:

(1)

等比數(shù)列前n項(xiàng)和公式:等比數(shù)列前n項(xiàng)和公式你了解多少?Sn={1-q(q=1)(q=1)Sn={1-q(q=1)(q=1)

(2)

等比數(shù)列前n項(xiàng)和公式的應(yīng)用:1.在使用公式時.注意q的取值是利用公式的前提;2.在使用公式時,要根據(jù)題意,適當(dāng)選擇公式。利用“錯位相減法”推導(dǎo)練習(xí)鞏固當(dāng)當(dāng)①②①②①課堂小結(jié)

(2)公式推導(dǎo)過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論