版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年湖北省武漢市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.二次積分等于()A.A.
B.
C.
D.
2.A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)
3.
A.1
B.
C.0
D.
4.設(shè)f(x)在x=2處可導(dǎo),且f'(2)=2,則等于().A.A.1/2B.1C.2D.4
5.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
6.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
7.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.
B.
C.
D.
8.設(shè)f(x)在點x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
9.
10.微分方程y''-2y'=x的特解應(yīng)設(shè)為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c
11.A.A.4B.3C.2D.1
12.設(shè)二元函數(shù)z==()A.1
B.2
C.x2+y2
D.
13.A.0B.1C.2D.4
14.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
15.
16.A.sin(2x-1)+C
B.
C.-sin(2x-1)+C
D.
17.
18.A.A.3yx3y-1
B.yx3y-1
C.x3ylnx
D.3x3ylnx
19.
20.
二、填空題(20題)21.微分方程dy+xdx=0的通解為y=__________.
22.設(shè)y=sin2x,則dy=______.23.設(shè)f(x)=x(x-1),則f'(1)=__________。24.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標(biāo)系下的二重積分的表達式為________。
25.
26.27.28.
29.
30.
31.
32.
33.
34.
35.
36.設(shè)當(dāng)x≠0時,在點x=0處連續(xù),當(dāng)x≠0時,F(xiàn)(x)=-f(x),則F(0)=______.37.
38.
39.交換二重積分次序=______.
40.
三、計算題(20題)41.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.43.證明:44.將f(x)=e-2X展開為x的冪級數(shù).45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.46.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
47.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.48.求曲線在點(1,3)處的切線方程.
49.
50.51.
52.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
53.求微分方程的通解.54.55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.56.
57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
58.
59.求微分方程y"-4y'+4y=e-2x的通解.
60.四、解答題(10題)61.
62.用洛必達法則求極限:63.64.
65.
66.
67.設(shè)z=x2ey,求dz。
68.求曲線y=x2+1在點(1,2)處的切線方程.并求該曲線與所求切線及x=0所圍成的平面圖形的面積.69.
70.五、高等數(shù)學(xué)(0題)71.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件六、解答題(0題)72.
參考答案
1.A本題考查的知識點為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
2.A
3.B
4.B本題考查的知識點為導(dǎo)數(shù)在一點處的定義.
可知應(yīng)選B.
5.C
6.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
7.C
8.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
9.A
10.C本題考查了二階常系數(shù)微分方程的特解的知識點。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
11.C
12.A
13.A本題考查了二重積分的知識點。
14.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
15.D解析:
16.B本題考查的知識點為不定積分換元積分法。
因此選B。
17.C
18.D
19.A
20.D
21.22.2cos2xdx這類問題通常有兩種解法.
解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,
因此dy=2cos2xdx.
解法2利用微分運算公式
dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.
23.24.因為D:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。
25.[-11)
26.
本題考查的知識點為不定積分的湊微分法.
27.28.1.
本題考查的知識點為反常積分,應(yīng)依反常積分定義求解.
29.+∞(發(fā)散)+∞(發(fā)散)
30.0
31.e-3/2
32.33.本題考查的知識點為重要極限公式.
34.
35.36.1本題考查的知識點為函數(shù)連續(xù)性的概念.
由連續(xù)性的定義可知,若F(x)在點x=0連續(xù),則必有,由題設(shè)可知
37.
38.
解析:
39.本題考查的知識點為交換二重積分次序.
積分區(qū)域D:0≤x≤1,x2≤y≤x
積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此
40.41.由等價無窮小量的定義可知
42.
43.
44.45.由二重積分物理意義知
46.
47.函數(shù)的定義域為
注意
48.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
49.
50.
51.由一階線性微分方程通解公式有
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
53.
54.
55.
56.
則
57.
列表:
說明
58.
59.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
60.
61.
62
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)保密協(xié)議書編寫技巧
- 物業(yè)租賃代理費用基金合同
- 股權(quán)代持入股合作協(xié)議書
- 2024購銷合同協(xié)議精要
- 二手電動自行車轉(zhuǎn)讓合同
- 2024版企業(yè)技術(shù)成果保護協(xié)議
- 影視作品制片權(quán)許可合同
- 土地使用權(quán)轉(zhuǎn)讓協(xié)議書示例
- 2024年設(shè)立股份公司資金注入?yún)f(xié)議
- 七年級地理上冊-5.1-世界的人口教案-商務(wù)星球版(1)(2021學(xué)年)
- 幼兒園:我中獎了(實驗版)
- 趙學(xué)慧-老年社會工作理論與實務(wù)-教案
- 《世界主要海峽》
- 住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)
- “三新”背景下的數(shù)學(xué)課堂教學(xué) 論文
- 中央企業(yè)商業(yè)秘密安全保護技術(shù)指引2015版
- 螺旋果蔬榨汁機的設(shè)計
- 《脊柱整脊方法》
- 會計與財務(wù)管理專業(yè)英語智慧樹知到答案章節(jié)測試2023年哈爾濱商業(yè)大學(xué)
- 廣東省2020年中考英語試題【含答案】
- 0417 教學(xué)能力大賽 公共基礎(chǔ)《英語 》教學(xué)實施報告 電子商務(wù)專業(yè)
評論
0/150
提交評論