版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年山西省呂梁市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案及部分解析)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.3B.2C.1D.1/2
2.
3.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
4.A.有一個拐點B.有三個拐點C.有兩個拐點D.無拐點
5.
6.
7.
8.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ=A.A.-3/4B.0C.3/4D.1
9.如圖所示,在乎板和受拉螺栓之間墊上一個墊圈,可以提高()。
A.螺栓的拉伸強度B.螺栓的剪切強度C.螺栓的擠壓強度D.平板的擠壓強度
10.A.x2+C
B.x2-x+C
C.2x2+x+C
D.2x2+C
11.
12.A.A.
B.
C.
D.
13.
14.若,則下列命題中正確的有()。A.
B.
C.
D.
15.
16.微分方程y''-2y'=x的特解應(yīng)設(shè)為A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+C
17.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)
則x=0是f(x)的()。
A.間斷點B.極大值點C.極小值點D.拐點18.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
19.
20.。A.
B.
C.
D.
二、填空題(20題)21.
22.
23.
24.
25.
26.27.
28.
29.30.cosx為f(x)的一個原函數(shù),則f(x)=______.31.32.
33.
34.
35.
36.設(shè)x2為f(x)的一個原函數(shù),則f(x)=_____
37.
38.
39.
40.微分方程y''+6y'+13y=0的通解為______.三、計算題(20題)41.求微分方程的通解.42.
43.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則44.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.46.證明:47.將f(x)=e-2X展開為x的冪級數(shù).
48.
49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.50.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.52.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
53.54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.55.
56.57.求曲線在點(1,3)處的切線方程.
58.
59.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.
62.
63.
64.若y=y(x)由方程y=x2+y2,求dy。
65.
66.
67.
68.69.70.五、高等數(shù)學(xué)(0題)71.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對六、解答題(0題)72.
參考答案
1.B,可知應(yīng)選B。
2.D
3.C
4.D本題考查了曲線的拐點的知識點
5.D
6.B
7.C
8.D
9.D
10.B本題考查的知識點為不定積分運算.
因此選B.
11.C
12.D本題考查的知識點為偏導(dǎo)數(shù)的計算.
可知應(yīng)選D.
13.A
14.B本題考查的知識點為級數(shù)收斂性的定義。
15.D
16.C因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
17.C則x=0是f(x)的極小值點。
18.C
19.D解析:
20.A本題考查的知識點為定積分換元積分法。
因此選A。
21.11解析:
22.
23.
24.
25.1/200
26.tanθ-cotθ+C
27.
本題考查的知識點為重要極限公式.
28.ee解析:
29.30.-sinx本題考查的知識點為原函數(shù)的概念.
由于cosx為f(x)的原函數(shù),可知
f(x)=(cosx)'=-sinx.
31.-1本題考查了利用導(dǎo)數(shù)定義求極限的知識點。32.1本題考查的知識點為定積分的換元積分法.
33.
34.(-33)(-3,3)解析:
35.00解析:36.由原函數(shù)的概念可知
37.-2
38.
39.x(asinx+bcosx)40.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).
41.42.由一階線性微分方程通解公式有
43.由等價無窮小量的定義可知
44.
45.
46.
47.
48.
49.由二重積分物理意義知
50.51.函數(shù)的定義域為
注意
52.
53.
54.
列表:
說明
55.
則
56.
57.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
58.
59.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
60.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
61.
62.63.本題考查的知識點為計算二重積分;選擇積分次序或利用極坐標(biāo)計算.
積分區(qū)域D如圖2—1所示.
解法1利用極坐標(biāo)系.
D可以表示為
解法2利用直角坐標(biāo)系.
如果利用直角坐標(biāo)計算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點.注意
可以看出,兩種積分次序下的二次積分都可以進行計算,但是若先對x積分,后對y積分,將簡便些.
本題中考生出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高端會議策劃與銷售服務(wù)合同模板
- 2025年度某局?jǐn)?shù)字化轉(zhuǎn)型勞務(wù)分包結(jié)算規(guī)范合同2篇
- 2025版辦公樓小型裝飾裝修工程施工合同示范6篇
- 2025版建筑工地挖掘機駕駛員勞動合同標(biāo)準(zhǔn)范本3篇
- 《全球化與兩岸關(guān)系》課件
- 可燃冰資源地質(zhì)評價方法與實踐考核試卷
- 2025版學(xué)校食堂蔬菜采購及食品安全追溯服務(wù)合同3篇
- 2025年度美術(shù)品藝術(shù)品投資顧問合同范本4篇
- 2025年學(xué)校節(jié)日慶祝協(xié)議
- 2025年合伙人員協(xié)議
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合試卷(含答案)
- 收養(yǎng)能力評分表
- 山東省桓臺第一中學(xué)2024-2025學(xué)年高一上學(xué)期期中考試物理試卷(拓展部)(無答案)
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
- 管道坡口技術(shù)培訓(xùn)
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識 CCAA年度確認(rèn) 試題與答案
- 皮膚儲存新技術(shù)及臨床應(yīng)用
- 外研版七年級英語上冊《閱讀理解》專項練習(xí)題(含答案)
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫必考題
- 上海市復(fù)旦大學(xué)附中2024屆高考沖刺模擬數(shù)學(xué)試題含解析
評論
0/150
提交評論